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1    Introduction 
This is the final report for AFOSR FA9550-05-1-0473. As the project developed a clear theme emerged from 
the work we undertook: increasing the efficiency of discontinuous Galerkin time-domain(DGTD) solvers for 
wave propagation, in particular for solving time-dependent electromagnetic field propagation. We developed 
four main strategies: 

• Multi-Rate Time Stepping DGTD: Decreasing the number of time steps needed for a simulation 
by allowing the solution in different parts of the problem domain to advance at different rates dictated 
by local resolution density. 

• CFL Enhanced High-Order DGTD: Developing a new filter that increases the maximum allowable 
time steps for high-order simulations. 

• Complete Radiation Boundary Conditions: reating a new family of radiation boundary condi- 
tions that gracefully truncate the solution domain close to scattering objects with efficient reduction 
of spurious reflection even in the presence of evanescent fields. 

• GPU Hardware Accelerated DGTD: Accelerated computation by using the latest generation of 
general purposes graphics processing units (GPGPU) as computational platforms. This is a natural 
prototype to adapt DGTD to the trend of computing towards many-core devices. 

The project also took an interesting detour: designing algorithms for creating massive tilings of polyomino 
pieces as suitable templates for passive array antennae production. 



2    The Discontinuous Galerkin Time Domain Method 

To simplify presentation of the advances achieved during this project we discuss them in the context of 
homogeneous material, non-dimensionalized Maxwell's equations being solved in a domain Q, with a cover 

k=K 
fi =   (J  Dk oi K elements that are typically but not limited to simplices, tensor-product elements or even 

general polygons and polyhedra.   The assumption of homogeneous material is only necessary for optimal 
performance of high-order filtering described later in this report. 

In terms of the electric field E, the magnetic field H, the charge density p, the current density j, the 
permittivity e, and the permeability ^, Maxwell's equations are: 

^ + VxE = 0, (1) 

V-B = 0. (2) 

B 

5D 
dt 

- V x H = -j 

V ■ D = p, 

The semi-discrete DG variational equations for Maxwell's equations demand that we find Q = \ 

Xh x Yh such that in the k'th element: 

^,^+Vx^^    =    {^-n^{E*-E-))d 

rj,,?£.-VxH\   ^    =    (i/,,+nx(/r~tt-)) 

fc i 

for all (     ,    |6 Xh x Yh. We have allowed the variational spaces for the solution fields to be quite general, 
\^ J 

but in practice we use product spaces of broken polynomial spaces on each element: 

k=K 

Xh = Yh= (${PN{Dk)y. 
k=l 

Furthermore, we did not specify the extension states H*,E* for the distributional derivatives. These are 
typically set to be an average or upwind combination of the '-' boundary trace of the solution from within the 
k'th element and the '+' boundary trace of the solution from the elements sharing parts of the boundary of 
the k'th element, dDk. This formulation is detailed in the first book on discontinuous Galerkin methods [34]. 

2.1    GPGPU Accelerated Implementations of the DGTD 

Discontinuous Galerkin methods [34,38,49] are, at first glance, a rather curious combination of ideas from 
Finite-Volume and Spectral Element Methods. Up close, they are very much high-order methods by design. 
But instead of perpetuating the order increase like conventional global methods, at a certain level of detail, 
they switch over to a decomposition into computational elements and couple these elements using Finite- 
Volume-like surface Riemann solvers. This hybrid, dual-layer design allows DGTD to combine advantages 
from both of its ancestors. But it adds a third advantage: By adding a movable boundary between its two 
halves, it gives implementers an added degree of freedom when bringing it onto computing hardware. 

At the same time, computing is undergoing a transformative and disruptive change at the moment: 
Previously, the execution time of a given code could be determined simply by counting how many floating 
point operations it executes. More recently, memory bottlenecks, in the form of bandwidth limitation and 
fetch latency, have taken over as the dominant factor, and CPU manufacturers use large amounts of silicon to 
mitigate this effect. It is quite instructive and somewhat depressing to compare the chip area used for caches, 
prediction, and speculation in recent CPUs to the area taken up by the actual functional units. The picture 



is changing, however, and graphics processors, having recently turned into general-purpose programmable 
units, were the first to do away with expensive caches and combat latency by massive parallelism instead. In 
this research, we explore how and with what benefit DGTD can be brought onto these graphics processing 
units (CPUs). 

We addressed two challenges as part of this research: First, how should the computational work be 
partitioned? In a distributed-memory setting, the answer is quite naturally domain decomposition. For 
CPUs, it turns out, there are several possibilities, and there is often no single answer that works well in 
all settings. Second, DGTD implementations on serial processors often rely heavily on the availability of 
off-the-shelf, pre-tuned linear algebra and communication primitives. These aids are either unavailable or 
unsuitable on a GPU platform, and in stark contrast to the relatively straightforward implementation of 
DGTD on serial machines, optimal use of graphics hardware for DGTD presents the implementor with a 
staggering number of choices. We will describe these choices as well as a generative approach that exploits 
them to adapt the method to both the problem and the hardware at run time. 

Using graphics processors for computational tasks is by no means a new idea. In fact, even in the days 
of marginally programmable fixed-function hardware, some (especially particle-based) methods obtained 
large speedups from running on early CPUs. (e.g. [46]) In the domain of solvers for partial differential 
equations, Finite-Difference Time-Domain (FDTD) methods are a natural fit to graphics processors and 
obtained speedups of about an order of magnitude with relative ease, (e.g., [45]) Finite Element solvers were 
also brought onto GPUs relatively early on (e.g., [40]), but often failed to reach the same impressive speed 
gains observed for the simpler FDTD methods. While high-level abstractions such as BrookGPU [36] have 
made relatively complex computations on GPUs possible, only the recent release of compute abstractions 
that are less encumbered by their graphics heritage [47,48] has interested many more researchers in bringing 
increasingly challenging computations onto the GPU (e.g. [41]). Taking advantage of these recent advances, 
this paper presents, to the best of our knowledge, one of the first general finite-element based solvers that 
achieves more than an order of magnitude of speedup on a single graphics processor when compared to a 
CPU implementation of the same method. 

A sizable part of this speedup is owed to our use of high-order approximations. High-order methods re- 
quire more work per degree of freedom than low-order methods. This increased arithmetic intensity shifts the 
method from being limited by memory bandwidth further being limited by compute bandwidth. The relative 
abundance of cheap compute bandwidth on a GPU makes high-order methods especially beneficial there. 
Figure 1(a) portrays the speed of our solver in comparison with a double-precision CPU implementation 
running on a single core of a 3 GHz Intel Core2 Duo E8400 CPU using ATLAS 3.8.2 [54] for its element-local 
operations. The results are scaled as floating point operations per second, obtained by counting the number 
of floating point additions and multiplications in the algorithm and dividing by the time in seconds. GPU 
times were measured using the cuEventElapsedTimeO call. Factoring in a potential CPU disadvantage of 
a factor of two for the use of double precision, the GPU outperforms the CPU by factors ranging from 19.4 
at order nine to 127 at order one. At the practically relevant orders of three and four, the adjusted speedup 
factors are 62 and 44, respectively. 

Orders three and four are particularly favorable not only for their appreciable speedups and their moderate 
time step requirements [53]. They also achieve the peak nodal value throughputs on the GPU as shown in 
Figure 1 (b). Naturally, high-order approximations of solutions to partial differential equations contain much 
more information per DOF than do solutions obtained via low order methods. This is most apparent in 
the number of DOFs required to accurately represent one wavelength [42]. Interestingly, we observe that 
DGTD methods of orders one and two do not appear to conform as well to the hardware's granularities and 
therefore achieve lower overall throughput than the next higher ones. This crossover between granularity 
effects and the increase in floating point work with growing N makes DGTD methods of orders three and 
four the fastest DGTD methods on a GPU even on a per-DOF basis. 

It is interesting to correlate the achieved floating point bandwidth of each computational component from 
Figure 2(a) with the bandwidth reached for transfers between the processing core and global memory, shown 
in Figure 2(b).  We obtained these numbers by counting the number of bytes fetched from global memory 
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(a) Discontinuous Galerkin performance in GFlcps/s on a 
GPU (using single precision) and a CPU (using double pre- 
cision). Speedup factors are given both for direct compar- 
ison and under the assumption that the CPU doubles its 
speed when computing in single precision. 
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(b) Degrees of freedom processed per second on the GPU. 

Figure 1: Performance characteristics of DGTD on Nvidia graphics hardware. 
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(a) Compute bandwidth in GFlops/s achieved by each part (b) Memory bandwidths in GB/s achieved by each part 
of the DGTD operator, at various polynomial orders. The of the DGTD operator. The peak memory bandwidth pub- 
published theoretical peak floating point performance for lished by the manufacturer is 141." GB/s. Values exceeding 
the hardware on which these tests were run is 933 GFlops/s peak bandwidth £,Te believed to be due to the presence of a 
[55]. texture cache. 

Figure 2: Performance characteristics of DGTD on Nvidia graphics hardware, continued. 
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Figure 3: A sample high-order DGTD scattering simulation computed using a GPU accelerated workstation 
in minutes. 

either directly or through a texture unit. The theoretical peak memory bandwidth published by Nvidia is 
141.7 GB/s, shown as a black horizontal line. Perhaps the most striking feature at first is the fact that the 
memory bandwidth measured for flux lifting transcends this theoretical peak at orders five and above. 

2.1.1     Summary: Accelerated GPGPU Computing with DGTD 

We have adapted a number of pre-existing DGTD codes for the GPU, enabling a thorough comparison of 
strategies for mapping the method onto the hardware. A final code was written that combines the insights 
gained from its precursors. 

We found that, using our strategies, high-order DGTD methods can reach double-digit percentages of 
published theoretical peak performance values. For a suitable CPU-limited workload, this means 
that a single workstation equipped with multiple GPUs can do work that previously required 
a roomful of computing hardware. Alternatively, a cluster of machines equipped with these cards can 
run simulations that were previously outside the reach of all but the largest supercomputers. This lets the size 
and complexity of simulations that researchers can afford on a given hardware budget jump by more than an 
order of magnitude. To allow potential users of our work to take advantage of this jump, and to let them easily 
reproduce and improve on our results, we have made our code available under the terms of the GNU General 
Public License. It may be downloaded from http://www.dam.brown, edu/people/kloeckner/hedge. A 
simple version with less flexibility can be downloaded from http://www. caam.rice.edu/~timwar/RMMC. 

In future work will extend the approach to make use of double precision floating point support that has 
become available on recent Nvidia hardware. In addition, we would like to broaden the applicability of our 
methods by exploring their use for nonlinear conservation laws as well as elliptic problems. 

Many-core computing presents a rare opportunity, and we feel that discontinuous Galerkin methods have 
a number of unique characteristics that make them unusually suitable for many-core platforms. In the past, 
users have chosen low-order methods because of the perceived expense involved in running simulations at 
a high order of accuracy. While this perception was questionable even in the past, we feel that many-core 
architectures disproportionately favor high order and significantly drive down its relative cost. Moreover, 
unlike most other numerical schemes for solving partial differential equations, DGTD methods make the 
order of accuracy a tunable parameter. These factors combine to give the user a maximum of control over 
both performance and accuracy. Furthermore, with the advent of quad-gpu workstations it is now possible 
for engineers to perform relatively large, high-order, 3D DGTD electromagnetic simulations in a routine 



manner in situ. 

3     Local Time Stepping for Discontinuous Galerkin Time Domain 

There is a growing literature of local time stepping methods for discontinuous Galerkin (DG) methods that 
allow for variable rates of time stepping throughout the computational domain (see for instance [27-32]). 
We consider here an alternative and simpler class of multi-rate Adams-Bashforth time stepping methods 
originally proposed for stiff/non-stiff systems of ODEs by Gear and Wells [33]. Combining the multi-rate 
Adams-Bashforth time stepper with the DG space discretizations allows for flexible domain discretization 
in space with full non-confornimg h and p adaptivity in space and more importantly local time steps can be 
chosen uniquely in each element. One particular goal is to avoid the problem of having to use artificially 
small global time steps to handle elements produced in mesh generation that are degenerately small. 

After choosing a basis for the test and trial space we obtain semidiscrete equations for the unknown 

solution QN =  (    p   ), given by ^ = &Q, where iL corresponds to a matrix representing the spatial 

derivatives discretized with the discontinuous Galerkin distributional derivatives. 
If all elements were to advance with the same dt we might choose an Adam-Bashforth (AB) time integrator 

then the fully discrete equations are 

Q 
n+l Qn + dt {a0ZQn + (nLQ71-1 + as-CQ""2) 

with coefficients for the first to third order AB schemes given in Table 1. 

Table 1: Coefficients for Adams-Bashforth time integrator: a and for the first half and second half time step 
Adams-Bashforth time integrators: 6 and c. 

Order QO ai 02 bo 6i h CO Cl C2 

1 1 0 0 1 0 0 1 0 0 
2 3 i o 5 -i o 7 -3 0 
3 1, & 5 A ir 2 2% -1-5 8 

1? 12 12 12 12 12 T?. T?. 12 

Invoking basic properties of the polynomial bases we can estimate that there is an upper limit for the 
time step given by di < Cjji where the constant depends on the order of the AB scheme. Here h is the 
minimum element size of all the elements in the mesh covering the domain. Unfortunately this is a global 
restriction and dt may be made small by a tiny minority of elements with high aspect ratio or small size 
driven by small scale domain geometry features. 

To remedy the global time step restriction we consider using a multirate extension to the basic AB 
schemes. We consider a partition of the domain into "coarse" and "fine" parts denoted by flc and Qp 
respectively. Denoting the solution restricted to the fine and coarse domains as QF and Qc respectively 
and reordering the degrees of freedom we write 

dt 
QF 

Qc 

LFF    HFC 

•C-CF     •C'CC 
QF 

Qc 

For simplicity we assume here that the largest stable time step for the coarse mesh, dt, is twice as large as 
the largest stable time step for the fine mesh, dtp- We now describe the multirate AB scheme in stages. We 
first time march the fine mesh by dt/2 with 

Q"+1/2-^ + ^ -CFF [aoQnF + aiQr1/2 + ^QF'
1
) 

+£JFC {boQc •M^+feor* (3) 



where the b coefficients are appropriate for integrating the quadratic interpolant of regularly spaced data 
over tn to tn+1/2. Next we integrate the fine mesh for the second dt/2 

n^+i - r)n+1/2 ,& f &FF (<IOQF
+1/2

 + OIQF + a2<3p       ) 
z   V      +^^0 [CoQc + ClQc     + C2Vc    j 

(4) 

where the c coefficients are appropriate for integrating the quadratic interpolant of regularly spaced data 
over tn+1/2 to tn+1. Finally, we update the coarse mesh 

Qc+   =Qnc + dt 

(        Zee {aoQZ + ajQJ-1 + a2Qr2)        ^ 
+^CF {aoQp+aiQr1/2+«2Qr1) 

+i-CcF {aoQn
F
+1/2 + OIQF + ^QT1'2) 

(5) 

in-l 

-2 (6) 

(7) 

Combining these equations we obtain 

nn+112 _nn + -r ( "^ + ^QT1'2 + ^QF 
y    -y+2^iv 6oQ&+6iQr1+&2Qr: 

and for the second substep 

+1 _    n+1/2     rf£    / aoQ^+1/2 + a&l + a2Qr1/2 ^ 
2      V      COQC + 

C
T.QC     +

C
2QC / 

We can also express the coarse-fine partition in terms of projections nc and nF 

Qn+l/2 = gn + ^ ^F ^gn + aiQn_l/2 + a2Qn-^ + JJC ^n + j^n-l + fe2Q"-2)) i (8) 

and for the second substep 

Qn+1 = Qn+l/2 + ^ |nF ^Qn+l/2 + aiQn + a2Qn-l/^ + JjC ^QU + ^gn-1 + C2Qn-2^ _       (9) 

We can further express each stage as a single step method: 

/ Qn+1/2 \ 
Qn 

Qn-l/2 

v Q-2 y 
/   Qn+l   \ 

Qn+l/2 

Qn 

\   Qn~l   J 

=    A1 

=    A' 

I    Qn-l/2 

\   Qn-2   I 

( Qn+1'2 \ 
Qn 

Q„-l/2 

V   Qn-2   / 

(10) 

(ii) 



where 

A1    = 

/ J + ^ZUF + ^LUC ^iiUF ^LUF + k^ZTl0 6^£nc N 

I 0 0 0 
0 I 0 0 
0 0 I 0 

V               o 0 0 I        J 
/ I+^CUF ^£nF + ^LU0 O^JJF c^£nC ^LUC \ 

I 0 0 0 0 
0 / 0 0 0 

V        o 0 0 I o       / 

(12) 

(13) 

A necessary condition for stability is to find dt such that A2 A1 has spectral radius less than one as we can 
combine these two steps to yield 

gn+l/2 

\  Qn-1   j 

A'A1 
(     ^     \ 

\  Qn-2   / 

(14) 

Furthermore, for eigenvalues with unit value we must determine that the corresponding eigenvector spaces 
are non-degenerate. We are in the process of analyzing these conditions. In the meantime we have conducted 
numerical experiments. In Figure 4 we verify for a specific instance that the approach does in fact allow for 
doubling of time-steps using the multirate time-stepping method outlined above. 

2.5 
AB2 

—global dt 

/ 
- - local dt 

2 

<  1.5 

/ / 

—global dl 
-■- local dl 

a) b) 

Figure 4: Maximum eigenvalue of the one-step system matrix for a) AB2, b) AB3 using global and two-level 
local time stepping. Notice that the spectral radius exceeds 1 at approximately twice the dt for the local 
time stepping method than for the global time stepping method. 

Transition I: We communicated a variant of this time-stepping formulation to Adour Kabakian, of 
Hypercomp. He implemented a version and presented results at the EMCC Annual Meeting, May 2008. We 
have included some snapshots of results he presented at this meeting. In particular results for local time 
stepping for the slit plate test case where speed ups of 2.5 are achieved, see Figure 5. 

3.1    Modeling Point Sources 

As we began to instrument the DGTD simulation code for localized forcing and monitoring of the solution 
we realized that there was an interesting issue in handling singular forcing while still maintaining high-order 
accuracy. 



Execution Times with Local Tiine-Slcpping 
for Square kx>. Flal Plate with A/100 Slit 

Square Xxk Flat Plate with VI00 Slit 

a) 

-jr-.^> llll 
b) 

Figure 5: a) Highly refined mesh for card scatterer with slit, b) Table of timings depending on the number 
of levels used for time stepping. [ Results courtesy of Adour Kabakian as presented at the EMCC Annual 
Meeting, May 2008. 

Recalling the time dependent Maxwell's equations with an electric point source given in terms of a time 
modulated Dirac delta function centered at (xs, j/s) 

^-VxH    =    -F{t)S{x-x*)S{y~ys) 

dB 

dt 

with corresponding DGTD weak form 

=    {<l>,-nx{E--E-))dDk (f>, — +VxE 

&, 

dt 

an 
at 

D' 

Vxif) =    (V.+nx (K'-i/-))aDt + (i/>,F(t)5(x-a:s)5(y-ys))Dt 

D* 

Our first attempt at handling the singular forcing involved using the selecting principle of the Dirac delta 
function to express the source term as a non-zero contribution in the element Dk that contains {xs, ys), given 

by 
(V, Fit)5 {x - xs) S (y - ys))Dk = F{t)xp{xs,ys), (15) 

and zero in all other elements. In the context of the DGTD variational statement we are simply using an 
L2 approximation of the Dirac delta. Unfortunately, this yields a slowly converging and highly oscillatory 
approximation to the singular function. 

The second approach we used was to iteratively refine the element containing the singularity using the 
Bisection algorithm and then to use the Multi-Rate DGTD algorithm to locally time-step the small elements 
resulting from the refinement. 

Our third approach to modeling the singular forcing is to use a narrow Gaussian as an approximation 
for the Dirac delta 

-x2/(adt) 
S{x)~e . (16) 

VTradt 

This can be resolved by the DGTD code when a is sufficiently large [ resolution width comment]. 
The fourth approach we used to model the singular forcing relies on the linearity of Maxwell's equations. 

In this case we express the solution in the element containing the singularity as a linear combination of a 
regular part and the solution of the free space singularly forced problem i.e. H = Hr + Hs and E = Er + Es. 
The solution to the free space problem can be calculated at relatively modest cost at the nodes on the 
boundary of the singularity containing element and its neighbors. In this way we do not have to explicitly 
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use the singular forcing function within the variational forcing as a volume term, but rather as extra flux 
terms in the singularity containing element and its neighbors. For instance the variational equation in the 
singularity containing element will read 

(V.^ + Vxi^   ^    =    (0,-nx(jr-£s-l^-))aDt, 

dDr 

dt 
^^--Vx/T =    {xl,,+nx{H'-Hs~Hr'-)) 

Dk 
dD" 

where the upwind fields have been computed with respect to the full fields.   Notice how the source fields 
only appear in the surface fluxes.  The key observation here is that we have entirely removed the singular 
components from the equations and this approach should guarantee optimal order convergence. 

We are currently investigating the relative performance of each of these approaches. 

4    Filtering High-Order Discontinuous Galerkin Time Domain for 
Efficiency 

A significant numerical hurdle for wave propagation is the generic need for preservation of phase and am- 
plitude information as rapidly varying wave profiles travel over long distances. Upwind DGTD has emerged 
as a competitive numerical modeling technique for achieving this goal. This method was originally pro- 
posed for neutron transport by R.eed & Hill [23] and analysed by many including Lesaint & Raviart [21], 
Johnson & Pitkaranta [18], Richter [24], and Peterson [22]. DG was revisited for time-dependent conserva- 
tion laws in a sequence of papers by Cockburn, Shu et al [6-8,10]. The method is particularly attractive 
for wave propagation because of the ability to use high-order, piecewise polynomial approximations for the 
solution which provides an efficient mechanism to manage phase and dissipation errors (see for example 
Ainsworth [1]). The method has been shown to be effective on quadrilateral meshes by Kopriva et al [19,20], 
on unstructured meshes of triangles with high-order approximation for Maxwell's equations by Hesthaven 
& Warburton [14,15,25], and on overlapping triangular meshes by Chung & Engquist [5]. Furthermore, 
this method automatically controls spurious solutions through selective dissipation of non-physical solutions 
(see for example Hesthaven & Warburton [16] and Warburton & Embree [26]). In addition, the structure 
of the numerical method results in computational algorithms which scale efficiently for large scale SIMD 
computations, Biswas et al [2]. 

The positive aspects of the upwind DGTD method are accompanied by a particular sour note. As the 
order of the polynomial approximation N is increased on a fixed mesh of elements, with mesh size h, the 
spatial differential operator discretized with DGTD typically has a spectral radius which grows as N2/h. 
This is in contrast to typical finite difference discretized spatial differential operators which have spectral 
radii which grow as N/h. This translates into the reality that the DGTD method requires smaller time steps, 
dt, to scale its spatial derivative operator's spectrum into the stability region of a standard Runge-Kutta 
time-stepping method. Thus, the advantages of the DGTD method are tempered by the extra number of 
time steps compared with finite difference methods. 

One goal of this project was to create a simple modification to the upwind DGTD method which reduces 
the spectral radius of a modified version of the discrete DGTD derivative operator to a more competitive 
N/h. By way of motivation we note the Hermite-Taylor method analyzed by Goodrich et al [12]. There it 
is shown that a combination of staggered Hermite interpolation and Taylor expansion based time stepping 
leads to a method with degree-independent time step stability constraints. Similarly, we find that for the 
case of an autonomous system of linear partial differential equations, combining the modified upwind DGTD 
spatial discretization with an AT+l-stage, explicit, Runge-Kutta time-stepping method it is possible to choose 
stable time step size, dt, independent of the spatial polynomial order TV. In the more general case of partial 
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differential equations with nonlinear terms or time-dependent forcing, we can expect a factor proportional 
to N increase in the allowable time step size. In the conclusion we discuss the limitations of this approach. 

4.1     Formulation 

In this section we describe a prototypical upwind DGTD formulation for the one-dimensional, uni-directional, 
advection equation. We then describe how to introduce a covolume-based filter which allows for larger steps 
when time-stepping the discretized equations. 

First introducing some notation:   the spatial interval Q = [a,b], is divided into a primal grid of Kl 

elements, T£ = \JtZi I1,1*, with I1* = [x1**,ar1"**1]. We associate the following broken Sobolev spaces 
with the primal grid 

Hm {nX) = U ^ L2 (Q) : qlj^ e Hm {Il'k) for fc = l,...,^1} , (17) 

where 
dag   2 

dxa <oo} . (18) 
L2(71.fc) 

Hm {I1'') = \g€L2 {I1-") : ^ 
I Q=0 

In each element the solution will be represented by polynomials of maximum degree TV. The numerical 
solution on the primal grid is chosen from 

Vl,h =   \J   PN {Tl-k) , (19) 
fc=i 

with no a priori assumption about the continuity of the the solution. We also require a covolume mesh whose 
elements are formed with end points in the interior of the primal grid. For definiteness we consider here the 
special case where these are chosen to be the midpoints of the subintervals of the primal grid, but as seen 

below such a precise choice is unnecessary. The covolume mesh then consists of K2 elements, {I2'k}k=1 , 

with elements I2'k = [J:1'''~'2
+Z'''c, i1'"-^'' +'    for elements not on the boundary. 

4.1.1     Upwind Discontinuous Galerkin Derivative Operator For Advection 

We are interested in solving advection and wave type phenomena, and consequently consider the prototype 
one-way advection equation 

^ + ^=0for (x,t)€[0,2)x[0,l] , (20) 

with periodic boundary conditions u{2,t) = u{0,t). 
For a simplified presentation we consider the upwind discontinuous Galerkin discretization of this equa- 

tion, because of its weighted residual formulation which has guaranteed stability, a block diagonal mass matrix 
and potentially high-order accuracy. The upwind DGTD variational statement involves finding u 6 Vl'h 

such that 

^),.,. + (^),„. + (^!H^i«i)8,„.-' '-' 
for all 0 € V1''1 and fc = 1, .... K1, where the notation [u] denotes the trace of u from inside element k 
subtracted from the trace of u taken from within the element sharing a boundary vertex with element fc. In 
familiar notation [u] = u+ —u~ where u~ is the internal trace of u in element k and u+ is the external trace. 
Here nx is the outwards facing normal at the element boundary and the boundary inner-product is defined 

(/, SW.» = / 0*1'*) 9 {xhk) + f (x1^"1) 5 (X1'*"1) (22) 
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We introduce a slightly more general notation which allows us to choose between an upwind boundary 
treatment and a central treatment via the operator D^, where Q £ [0,1] is a parameter which interpolates 
between each type of treatment. Formally D* is the operator which satisfies for any u 6 V1'* 

for fe = 1,..., K1 and 4> e Vl'h. Now we succinctly represent the upwind DGTD variational statement by 

^       +(^JD»71,t=0 (24) 

This notation highlights the significant fact that despite its apparent complexity, the DGTD operator is 
actually just the result of encoding a distributional derivative to account for boundary conditions introduced 
at the end points of each element. 

After discretization of the V1,h variational space of functions defined with respect to the primal grid, the 
advection equation is reduced from a partial differential equation to an ordinary differential equation 

^ = -Di„., W 

where D^ is the upwind DGTD derivative matrix defined on the primal grid by 

where M^ = (0„, 0m)7i,t. It is useful to view the Dj, matrix as representing a discrete distributional 
derivative operator, and thus later on it will be transparent that modifying this operator by filtering matrices 
is not a complicated process. Once we establish the method, then we will appeal to the variational statement 
to establish stability but in terms of implementation it is most instructive to think in terms of he action of 
matrices on the solution. 

We can immediately establish L2 stability with the following result 

k k 

which states succinctly that the choice of upwinding the solution at the end points of the elements before 
taking the DGTD distributional derivatives acts to reduce the L2 energy of the numerical solution whenever 
there is a jump in the solution between elements. 

We next introduce the discretized form of the transfer operators. These are the matrices II2 , Ti1 defined 

by 

(02,^)T/2n
2
J    =    E((^'^1)/^nP.t + (^'^)r1.-1n/^)  ' (28) 

it 

(^,^)T,n^  =  £ ((^%,tn/2,fc + (^%,t+ln/2,fc) , (29) 
k 

for all basis members {^} "-, P on the K covolume mesh elements and all the basis members {$■}.. P on 
the K primal grid elements. It is immediately observed that these transfer matrices are related by 

M2n2= (M1!!1)' . (30) 
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4.1.2     Modified Upwind DGTD Method 

We now have sufficient notation to propose a new type of DGTD method which we write in pseudo-code 

1. Evaluate initial condition on primal grid. 

2. Start time stepping, with an s-stage Runge-Kutta scheme. 

3. For each RK stage: 

(a) L2 project the solution from primal grid to covolume mesh. 

(b) Compute DGTD distributional derivative on covolume mesh, using upwind fluxes suitable for the 
advection equation. 

(c) L2 project the DGTD distributional derivative to original grid. 

(d) Update solution for RK stage using L2 projected DGTD distributional derivative. 

4. Continue time stepping until final time reached. 

We have added two projection stages. The first stage is designed to project the original piecewise 
polynomial solution on the primal grid onto the covolume mesh. The purpose of this projection is to 
diminish the maximum gradients achieved on the covolume mesh elements. We then evaluate the DGTD 
distributional gradient on the covolume mesh and project it back on to the primal grid, and again our aim 
is to reduce the potential for large near boundary gradients. 

In matrix notation we are solving the following ordinary differential equation 

^ = -r^D2!!2*! , (31) 
at 

where the DGTD derivative matrix D2 is defined on the covolume mesh. We can also relax the stabilization 
by averaging the stabilized DGTD derivative with the unstabilized DGTD derivative 

^ = -/n^D2!!2!! - (1 - /?)D> (32) 

where /3=1 — 0(-^).  It is straightforward to perform the L2 stability analysis for this modified DGTD 
scheme, with the L   energy equation given by 

4 Ik11'2 -    -P- 

X^WKM*1]^.*- (33) 

dt 
k 

(1-/3) 

Thus the numerical energy decreases if there are jumps in ul between elements on the primal grid and if 
there are jumps in II2^1 between elements on the covolume mesh. (We will subsequently observe that the 
filtering process creates an intermediate field with much reduced jumps.) 

4.1.3     Motivation for Using a Covolume Mesh Based Filter 

The traditional discontinuous Galerkin discretization of a first order distributional derivative has maximum 
eigenvalue which asymptotically grows as O ( -^ j when the order of polynomials used, N, is increased or 

h is decreased (e.g. [11,13]). In the particular case of hp type methods, where it is considered desirable to 
use a high order polynomial approximation when possible, the derivative operators become artificially stiff. 
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This artificial stiffness is the result of the nature of the piecewise polynomial discretization spaces used. In 
this section we detail the causes behind the scaling and present a revealing observation that we use to build 
the modified DGTD methods. 

We first recall the following polynomial inequalities (see for example Borwein and Erdelyi [3] for details 
and generalizations) 

Theorem 4.1 (Bernstein's Inequality)   The inequality 

[x] 
N 

VT 
-1 < X < 1 

holds for every q € PN {[-1,1]). 

Theorem 4.2 (Markov's Inequality)   The inequality 

<N2M 

holds for every q <E PN ([-1,1]). 

We put these together and observe that 

dq 

dx 
{x) < min   Ar, 

N 

v/T 
-1 <= a; <= 1 , (34) 

and since these estimates are sharp, the gradients of normalized n'th order polynomials may be up to O (^j 

at the near boundary portion of the element and O (^) near the center of the element. These inequalities 
explain the difference between the Courant-Priedrichs-Lewy (CFL) conditions of a typical finite difference 
method, where a moving interpolation stencil is used and slope information is generally extracted at element 
centers, and the DGTD method where slope information is used throughout. 

As part of this effort we proved the following analogs that extend the above two inequalities to the case 
of the L2 norm. 

Lemma 4.3 (L2 Version of Bernstein's Inequality)   The inequality 

<CaN\\q\\L.{[_lA])  , 
dq 

dx 
(35) 

i2(l-a,<2]) 

where Ca = &£*, holds for every q e PN {[-l,l])- 

Lemma 4.4 (L2 Version of Markov's Theorm.)  Assume u e PN {I1'1') then 

LHl-hi]) 
< V3N2 Mva-1,1]) 

These results show that the pointwise non-uniformity of polynomial gradients also extends to L2 and the 
underlying cause of the excess stiffness of DGTD is the piecewise polynomial approximation used. These 
results will also apply to FEM 

We start with the combination of these two inequalities as our inspiration for using a co-volume grid 
based filter to smooth out the inhomogeneity of polynomial gradients. In Figure 6, we plot the upper 
bound (34) for three bi-unit one-dimensional elements which each overlap by half their lengths with their 
neighbors.   This upper bound on the scaled gradient of polynomials grows dramatically near each of the 
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Figure 6: Combining upper bounds on the relative maximal gradient of polynomials in P8 for primal and 
covolume mesh yields a more uniform bound. 

element boundaries. However, we have also highlighted the minimum upper bound of all three in the central 
element and this curve is almost constant throughout this element. This observation yielded the possibility 
that we may be able to overcome the artificial stiffness induced in the DGTD scheme by the non-uniform 
gradients of polynomial approximations to fields. In the next sections we prove that covolume derivative 
operator, n^D^II2, motivated by these inequalities, in fact satisfies the desired bound. 

It is also necessary to study the properties of the projection-based filter that is implicit in our formulation. 
We note that these projection operators are both contractions, i.e. ||n2u|| < ||u|| and Iffajj < ||u||. 
Furthermore, we consider the action of the operator defined by II2!!1. This operator is a filter and in 
subsequent sections we establish its properties by deriving bounds on \\u - H^ffajl. 

4.2     Bounds on the Covolume Derivative Operator 

Here we present our main result on the ./V-dependence of the covolume derivative operator. We work in the 
framework described above periodically extending functions beyond [0, 2). 

Theorem 4.5 Let q be a degree N piecewise polynomial function relative to the primal grid, q 6 V ^ and 

set, for a € [0, l]; 
Ds^q = I^D2 HV (36) 

Then there exists a universal constant, C, such that: 

N. 
\\Vs,aq\\ma) < CT\\q\\L2{n) (37) 

As an immediate corollary we have: 

(/52)s,a + (1 - /3)Di) q\\^m < cY/3^ + (1 - /3)^-j IMI^n), (38) 

so that the desired bound for the matrix appearing in (32) is obtained if we take (3 = 1 — 0 [jj). 
Having established the improved stability property, we also established a suboptimal error bound for the 

proposed covolume method. We note that, in comparison with error estimates for the standard approach, our 
estimates are 0{h}l2) worse. We suspect that, in fact, the proposed method is as accurate as the standard 
one. We show below that this is true in the constant coefficient case on uniform grids; then we can use Fourier 
methods as in [17] to show that the error is 0{hNJrl). Our numerical experiments indicate that the modified 
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method is also as accurate as the standard method for nonuniform grids. However, direct application of the 
method of proof from, e.g., [9] fails. We plan to consider alternative analyses in the future. 

To simplify the presentation we consider the /? = 1 fully filtered case, as the extension to the partially 
filtered case is straightforward. We also only consider the semidiscrete scheme. 

Theorem 4.6 Suppose u saiisfi.es (20) with u{x,0) = u0{x) € HT+1.  Then for all 0 < s < min(n, r) there 
exist constants CntS such that the solution, Uh, of the semidiscrete problem satisfies the error estimate: 

■fc1 S+1 M ff»+i(/i.») l«-«fclli»(n)   ^   c^ Yl ihly 

fca.1 

k=Kl 

k=l 

k=K2 

+Cn,s ^  (ft2-fc)s+i ||u||^+1(/2,fc) 

k=i 

k=K2 

+Cn,s Y:  {h2'k)STm^{\\u\\H.+HI2.k)), 
fc=l 

These estimates can be improved in the specific case when the domain is periodic and the mesh consists 
of equal sized elements. 

4.3    Numerical Results 

In this section we investigate the sharpness of the analytical prediction of order of accuracy, and in fact go 
further and experimentally test the spectral correctness of the discrete modified upwind DGTD operators. 
This latter test is an important indicator of potential solution quality and robustness in practical situations. 
Admittedly, the method as presented is rather limited in geometric flexibility and in representing solutions 
of low regularity but it is important to establish the potential for the method before we should even consider 
further development. 

4.3.1     Test 1: Advection on Regular Grid 

In our first test we chose to discrerize the periodic interval [0,2] with 20 elements using 7'th order polynomials 
in each element. In Figure 7 we show the full spectra of the discretized upwind DGTD differentiation operator 
for P = 0,0.2,0.4,0.6,0.8,1.0. It is immediately apparent that the modified operator has a much reduced 
spectral radius as /? increases. 

However, it is also apparent that the filtering process is wrapping the spectrum tightly near the imaginary 
axis so we must be concerned about the possibility of spurious eigenvalues for the discrete operator. Also in 
Figure 7 we show the same spectral plots but each zoomed to the limits of the /? = 1 case. 

We see that with P = I the normally highly dissipated DGTD eigenmodes have reduced dissipation 
and are now in close proximity to the imaginary axis, in particular near the origin, and may present in 
time-domain simulations as parasitic solutions. This effect can be mitigated in this specific case by choosing 
f3 = 0.8 say. Then there is a clear separation between the spurious and non-spurious eigenvalues. There is 
clearly a need for a subtle balance between decreasing the spectral radius of the original DGTD operator 
and confusing the spectrum near the imaginary axis. The well represented Fourier modes evident on the 
imaginary axis are in danger of being inundated with the collapsing modified spurious DGTD modes. 

In Table 2 we show the spectral radius for each 0 value tried. It is clear that this simple modification 
yields significant reduction in the spectral radius, and corresponding increase in the maximum size of dt. 
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Figure 7: Full spectra for /8 = 0,0.2,0.4,0.6,0.8,1.0 version of the discrete upwind DGTD operator on a 
mesh of iiT = 20 and N = 1. Notice how the spectral radius diminishes in the /3 —> 1 limit, i.e. the fully 
filtered approximation of the derivative. Top: full spectra. Bottom: zoom of origin. 

We may deduce that using /3 = 0.8 is a reasonable compromise between spectral radius deduction and 
maintaining separation of the spurious modes from the imaginary axis. 

Table 2: Dependence of the spectral radius of the partially stabilized operator on the /3 parameter for the 
K=20, N=7 upwind DGTD operator on the [0, 2] periodic interval. 

/? 
Spectral 
radius 

Decrease 
factor 

0 

614.8148 

1.0000 

0.2 

495.7820 

1.2401 

0.4 

376.6496 

1.6323 

0.6 

257.2761 

2.3897 

0.8 

137.1975 

4.4812 

1.0 

129.3503 

4.7531 

The decrease in spectral radius is an attractive property of this approach, but it is also necessary to 
examine the impact of the use of the covolume meshes on the accuracy of the solution. We performed 
h-convergence tests for K = 32,64,128,256, N = 1,2, ... , 9 with /? = 0 (i.e. unfiltered upwind DGTD) with 
dt = h/{2{N + 1)) and then with 0—1- 2/{N + 1) and dt = h/5 using an initial condition 

u = exp (-AOsmfoirx)2)) . (39) 

We integrated in time using the JV + l-order Runge-Kutta-Taylor method, sometimes referred to as the 
Jameson-Schmidt-Turkel scheme (e.g. [4]), which for a linear autonomous system is simply a recursive eval- 
uation of the Taylor series for the matrix exponential. We estimated the rate of convergence by assuming 

18 



the error has form e = Cnh
n and using the Matlab function polyfit to compute a linear fit to the log of the 

error values: coeffs = polyfit(log([l .5 .25 .125]),log(errors)); order = coeffs(l). 
The results for the unfiltered upwind DGTD solution of the advection equation are shown in Table 3. 

We clearly see that for 2 < n < 7 the order of convergence measured at time t = 1 is between N and N + 1. 
It is clear that the N = 1 results are preasymptotic for this case, and the TV = 9 and TV = 10 cases show 
convergence rates diminished because the finest resolution error is near finite precision. Here we used a time 
step dt = h/(2{N + 1)) which was experimentally found to be stable for all test cases, and close to the 
maximum dt while retaining stability. 

Table 3: h-convergence results for an unfiltered upwind DGTD discretization of periodic array of pulses 
advecting in the periodic interval [0,2] with dt - h/(2{N + 1)). Results prone to finite precision effects are 
marked with *. 

N+l h = 2-5 h = 2-b h = 2-'1 Estimated Order 

2 5.636576e-01 3.506396e-01 1.462750e-01 0.973068 

3 2.226571e-01 4.608446e-02 4.562249e-03 2.804467 

4 4.449859e-02 2.294515e-03 1.286897e-04 4.216860 

5 9.280798e-03 2.022760e-04 6.249343e-06 5.268164 

6 l,103024e-03 1.267373e-05 2.891989e-07 5.948557 

7 1.096652e-04 1.625903e-06 1.288686e-08 6.527459 

8 2.025857e-05 7.457799e-08 4.831807e-10 7.677805 

9 2.265482e-06 1.065869e-08 1.9569796-11* 8.410415* 

10 5.625579e-07 2.223321e-10 2.431499e-12* 8.909898* 

Results with filtering and a fixed time step of size dt = /i/5 are shown in Table 4. 
near optimal rates of convergence are attained in this case. 

It is clear that the 

Table 4: Filtered h-convergence results for a periodic array of pulses advecting in the periodic interval [0, 2] 
with dt = /i/5. Results prone to finite precision effects are marked with *. 

N+l /i= 2-b h = 2-b ft = 2-' Estimated Order 

2 5.526314e-01 3.321274e-01 1.317145e-01 1.034451 

3 2.269038e-01 5.524013e-02 6.671504e-03 2.543963 

4 5.991306e-02 3.797743e-03 2.005506e-04 4.111380 

5 5.076105e-03 1.905365e-04 7.344839e-06 4.716388 

6 7.340714e-04 1.554913e-05 4.416766e-07 5.349357 

7 2.419079e-04 2.224695e-06 1.488670e-08 6.994073 

8 3.333436e-05 8.429268e-08 4.038341e-10 8.166444 

9 4.969031e-06 7.334270e-09 3.320344e-ll* 8.595636* 

10 5.725566e-07 3.664249e-10 1.267431e-12* 9.392576* 

In Figure 8 we show the discrete eigenspectra of the discrete DG spatial operator scaled by dt = h/5, this 
more conservative time step comfortably accommodates the discrete spectra within the RK stability regions. 
Some weak growth in the spectral radius of the scaled operators may be associated with the /? weighted sum 
of filtered and unfiltered gradients. 
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Figure 8: Discrete eigenvalues of upwind DGTD scaled by dt = h/5 with and without covolume mesh 
filtering, superimposed on the margins of absolute stability of equal order Runge-Kutta-Taylor schemes, (a) 
N=3, (b) N=4, (c) N=5, (d) N=6) (e) N=7, (f) N=8. 

4.4    Numerical Results: ID Maxwell's Equation 

In this section we will present experimental results for the accuracy of the modified DGTD method for the 
ID Maxwell's equations. 

We first present estimates of the order of accuracy of the method based on simulations run to time 
t = 100.23. The model solution was constructed from a random coefficient linear combination of the first 
two hundred standing wave solutions to the Maxwell's equations which satisfy the boundary conditions 

=200 

H -      2~]   rm cos {rmrx) cos (m-Trt) , 
771=1 

771=200 

Ez    =    —   2_\   rm sin (mTrx) sin (mTri) , 

(40) 

(41) 
771 = 1 

where the rm are random numbers generated by Matlab's rand function as rrn = rand(l) * 2_-2m which 
decay with with increasing mode number to guarantee smoothness. We deliberately chose a relatively long 
integration time to allow for the truncation error to accumulate to a measurable degree. The time step size 
dt was chosen according to 

dt = 0.15/1 . 

The results in Table 5 show that for iV > 4 we see expected order of accuracy. The N = I and iV = 2 results 
are likely preasymptotic and no conclusions are drawn. It should be noted that two different ranges of h 
were used to estimate the order of the method for 1 < JV < 6 and 7 < N < 9 since the solutions converged 
to machine precision for the latter range of N before the end of the range of h used for the former tests. 
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Finally, we note that the iV = 1 case with our choice of/? = 1 - 2/(iV+ 1) is actually the unmodified upwind 
DGTD method. 

Table 5:  Order estimates for error in solving ID Maxwell's to time t = 100.23 on a sequence of h-refined 
meshes with 1 < n < 9. Results which are suspected to be pre-asymptotic are marked with *. 

(iV+1) ft = 0.03125 h = 0.015625 h = 0.0078125 Est. order 

2 0.825* 0.479* 0.21* 1.0 
3 0.158* 0.0809 0.0237 1.4 
4 0.0669 0.00823 0.000595 3.4 
5 0.0131 0.000542 1.5e-05 4.9 
6 0.00123 2.39e-05 4.1e-07 5.8 

(iV+1) h = 0.0625 /i = 0.03125 h = 0.015625 Est. order 

7 0.0125 0.000293 1.69e-06 6.4 
8 0.00282 3.35e-05 7.56e-08 7.6 
9 0.000937 4.67e-06 3.66e-09 9.0 
10 0.000433 9.52e-07 6.2e-10 9.7 

4.5    Summary: Filtering Relaxes Time Step Restriction 

During this project period we have created a simple modification to the upwind DGTD methods which 
increases the allowable time step by a factor proportional to the polynomial order of the spatial discretization, 
N. Both a basic local truncation error type analysis and Fourier based dispersion analysis reveals that the 
modified method yields convergence rates comparable to the unmodified method in L2. The method was 
tested for the advection equation and Maxwell's equations on one-dimensional meshes. We have conducted 
similar experiments on two-dimensional meshes. Unfortunately the addition of multi-diemnsional co-volume 
meshes presents logistical difficulties for the DGTD method. Nontheless this is the first demonstration of a 
filter based approach that achieves the CFL modification without impacting the solution accuracy. Further 
work is required to create a practical version. 

5     Complete Radiation Boundary Conditions 

A central issue in the development of efficient computaional methods for simulating time-domain wave 
propagation is the imposition of accurate, near-field radiation boundary conditions. In recent years a number 
of new techniques have been proposed which are capable of providing arbitrary accuracy [70,71,75]. Foremost 
among these fast, low-memory algorithms for evaluating integral operators appearing in exact formulations 
[56,57,82], the perfectly matched layer (PML) [58,61], and arbitrary-order local radiation boundary condition 
sequences [68,69,72,77]. The integral equation formulations have the advantage of excellent long-time 
accuracy, but require special boundary shapes and, in -3 + 1 dimensions, spherical harmonic transforms. 
The local methods, on the other hand, can be used on polygonal artificial boundaries, but become costly if 
long-time accuracy is required [63-65]. 

The goal of this aspect of the project is to develop a method which combines the excellent long-time 
accuracy of the nonlocal conditions with the geometric flexibility of the local methods. Following the con- 
structions in [68,69,72,77], we focus on auxiliary variable formulations applicable on polygonal artificial 
boundaries. Precisely we prove that the number of auxiliary variables, P, required to obtain an accuracy e 
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up to time T satisfies: 

P = o(ln-e-\n^pj (42) 

where J > 0 is the distance from the artificial boundary to the domain containing sources, scatterers, or other 
inhomogeneities. For efficient discretization it is natural to choose J ~ A where A is the smallest wavelength 
of interest. Then the asymptotic complexity matches that of the optimized spatially nonlocal approximations 
constructed in [57]. Thus, in our view, the proposed method provides a satisfactory solution to the time- 
domain domain truncation problem for isotropic systems, and it has the potential for generalization to more 
complex models. 

We also note that, although our focus here is on auxiliary variable formulations of local boundary con- 
dition sequences, it is now known that such sequences can be viewed as specific discretizations of perfectly 
matched layers [59,69]. Thus our construction also suggests a certain combination of real and complex grid 
stretching to optimize PML discretizations. This will be pursued in future work. 

5.1     Complete plane wave representations 
We begin by considering a field, u{x, y, t), which satisfies the scalar wave equation in the half-space x > -6 
for some <5 > 0. That is: 

^ = c2V2u,   x>-S,   yeRd'\   t>0, (43) 

with u = 0 at t = 0. Here we suppose the field is produced by sources, scatterers, and other inhomogeneities 
located in the half-space x < -S. These effects are all accounted for by Dirichlet data: 

u{-S,y,t) = giy,t). (44) 

We then easily derive a formula for the evolution in x of the transverse-Fourier-Laplace transforms of the 
solution of (43)-(44): 

u{x, k, s) = u{-5, k, s)e^2+lfcl2)1/2(*+*). (45) 

Here k £ Rd~l are the dual Fourier variables to the transverse spatial coordinates y, \k\ is the Euclidean 
norm, s is the dual Laplace variable to time, and s = f. The branch of the square root is chosen to have 
positive real part for Rs > 0. 

Now invert the transform, integrating with respect to k over the real hyperplane K^"1 and with respect 
to s over the contour, s = ico + ^ with u real. Here T > 0 is fixed and has units of time. For numerical 
methods T will measure the time over which approximations based on the exact representation are valid. 
We begin by representing the square root. Setting 

we have 
1/2 

where by squaring we deduce 

((1+ &)* + &)      =a + ib, (47) 

b=*}     1+-k2_d,2 = a2_^ (48) 

a az 

As the right-hand side of the second equation above is an increasing function of a2 and is not greater than 
the left-hand side when a2 = 1 we conclude that for the branch of the square root chosen a > 1. Thus we 
have for some ^> G [0, f): 

a= ,   b = ojcos(j). (49) 
COS?) 
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Reintroducing s we finally have: 

„2 
(s-2 + |^)l/2 = S-COS 0+^-^, (50) 

cT cos® 

where 

Setting 

S=-+WJ,   lfc| = — ytan2^ + sm2^^. (51) 

Going over to polar coordinates, p, 6 e §d_2, in the dual spatial variables and replacing p = \k\ by p{(p,u) 
we obtain: 

uix,y,t) = {2nr^il  f*   r  f     ^'upd-2^dA{e)dwd4>, (52) 

where 2 ,.(.„4)(t_^ + 4))+v(9^)-±.5||(l + j)l (53, 

- i/ | -5, pfl, = + «*>] . (54) 

^t,y,<P) = {27T)-Liin  T   f     e^±)t+^y)upd-2^-dA{e)du (55) 

we finally have our complete plane wave representation of the solution, valid for x > -5: 

u{x, y,t)=  T $(t-C-^ix + S),y, A e-^r^^dt. (56) 

Note that an alternative representation can be derived by inverting the Laplace transform along the 
imaginary axis. Then we express the solution as a superposition of propagating plane waves at all possible 
angles and evanescent waves at all possible decay rates. Such an expression has been analyzed in the time 
domain by Heyman [79] and plays an important role in the plane wave fast time-domain algorithm [67]. We 
have also used it to derive radiation boundary conditions [73]. The expression given here is somewhat more 
efficient for first order systems, but the alternative expression given in [73] has some advantages for second 
order formulations. 

We are, of course, aware that calling this a plane wave representation is a misnomer due to the y- 
dependence of $, but we use the term for simplicity. 

5.1.1     Extension to systems and other generalizations 

To extend (56) to isotropic systems we simply note that the representation above holds for any field com- 
ponent which satisfies the scalar wave equation. For example, suppose the equations of acoustics hold in 
x > -(5: 

% + cV-v = 0, (57) 
ot 

^+cVp = 0. (58) 

Then by our assumptions on the initial data V x i; = 0 so we may introduce a velocity potential, v = Vg, 
cp = ^- f? • Then q satsfies the scalar wave equation and thus p and v admit the plane wave representation 
(56). Similar considerations hold for Maxwell's equations. 
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The representation may also apply to systems with multiple wave speeds. Consider, for example, Navier's 
equations of linear elasticity: 

P^T = (A + M)W ■ w + MW (59) 

Introducing the Helmholtz decomposition of w. 

w = Vq + V xrj,   V • 77 = 0, (60) 

we derive scalar wave equations for q and the components of 77: 

d2q        22        d2V        2x72 K>,\ 

where 

C? = A±^,   ^ii. (62) 
9 P 

Thus q and r\ satsify (56), albeit with different wavespeeds, and hence w satsfies a combined representation: 

Wi{x,yA)    =     /    $i,i U —(x + 5),y,<pje 

f'  - / COSli. „ \       _^_.»in2< 
+ /    &2.i[t {x + 5),y,(t>j e   =2^ ^rr 

^T-ltfix+i)^ 

(63) 

Lastly we consider an anisotropic example, the acoustics system in a subsonic mean flow: 

^ + cV • « = 0, (64) 

Dv 
— + cVp = 0, (65) 

where 

§isM + vv' |v|<c- (66) 

Now we introduce the Helmholtz decomposition of v. 

Dq ,    , 
w = Vq + V xri,   CP=-^;. (67) 

leading to the equations: 

n=c2V2q, (68) 
D2q _ 

Dt2 

g-o. (e9) 
The solution of the transport equation (69) in the half-space is dependent on the sign of Vx. If V^ < 0 then 
q = 0 but if Kc > 0 then: 

rl = i:{yxt-{x + 5),Vyt-y). (70) 

As for the convective wave equation (68) the Fourier-Laplace transform of the solution of the Dirichlet 
problem analogous to (45) is: 

q{x.k,s) = q{-5,k,s)e ^^^T {x+l>\ (71) 
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with 
s = S + iVyk. (72) 

Following the same decomposition of the inversion integrals as in the case of the standard wave equation 
yields the slightly more complex formula: 

q{x,y,t) =  [' # (t-C^i^LiX + S),y-Vyt,A e-ra^(*+%. (73) 
JO K c   " vx J 

The formula clearly displays the possibility of incoming phase velocities for outgoing waves at outflow. We 
have not as yet considered the problem of constructing stable boundary conditions based on this represen- 
tation, but we plan to do so in the future. This issue is closely related to the problem of constructing stable 
perfectly matched layers for anisotropic systems, which is still not completely understood [58,60]. 

5.2    Approximate local boundary condition sequences 

We now use (56) to derive approximate local boundary condition sequences. We focus on first order systems; 
the treatment of second order formulations is discussed in [76]. 

By way of motivation, consider an approximation to (56) derived by replacing the 4> integral by a quadra- 
ture rule with nodes fyj and weights hj: 

uix,y,t) «f>« (t - ^l{x + S),y,b) e-*-^(l+6). (74) 
.7=0 V c / 

Generalizing the construction of [77], we introduce a second set of angles 4>j and define auxiliary functions 
Uj{x,y,t) by setting uo = u and recursively solving in x > —5: 

cos ^j duj+1      duj+i       1  sin203 _ costpjduj      duj       1 sin2 ^ 
~1     m        dT+ 7r cos^ %+1 ~    c    dt + dx+ cT cos^ Uj' {'0) 

subject to Uj+i{x,y,0) = 0. It is straightforward to see that the individual terms in (74) are annihilated by 
one of the differential operators on the right-hand side of (75). Thus if we replaced uo by the approximate 
representation we would conclude: 

UP+I = 0. (76) 

We now simply impose (76) on incoming normal characteristic variables. Precisely, consider the first order 
hyperbolic system: 

where we have put A in diagonal form: 

( D+ 0   0 \ 
A= \      0    -D-    0     , (78) 

\     0 0    0/ 

and the diagonal matrices D± are positive. Block w according to the blocks of A: 

(79) 
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As in [77], a simple induction argument shows that vector functions Wj defined via (75) (with u replaced by 
w) will also satisfy (78). Multiplying the recursion relations by A and eliminating x derivatives yields the 
following system which can be considered along the boundary x = 0: 

r I        f)i £—J rim. rT1 rvteuLi ot        '—'        oyk        el  cosd>i 

)WJ     ^-^      dwj       1  sin2 

dt       ^      dyk      cT cos< 

cos&j   \ dw-j     v-* _ dw-j       1 sin  0,- ,    , 

k=l 

Imposing the termination condition: 
wp+i,- = 0, (81) 

we see that (80) implicitly defines a relationship between the outgoing characteristic variables wot+ and 
the incoming characteristic variables, WQ,-- Precisely, if we assume the functions Wj are given along the 

boundary a; = 0 for some time t and in addition that ^^ is known, then the remaining time derivatives 
may be directly computed. For the auxiliary variables associated with the outgoing characteristics we may 
solve for increasing j: 

I |  cosh p  \ dwi+1'+     =     (   j |  cos^ D  \ dwi'+ 
dt \ c J     dt 

d-l dwj+i dwj 

1  _    /sin2^, sin20,- 

cT   +\cos(j)j    J'+      coscpj    J    ' 

For the auxiliary variables associated with the incoming variables, on the other hand, we solve for decreasing 

j- 

j ,  cos't>j D\ dwj-     _     /   / |  cos4>j D  \ dwj+i- 
dt \ c J       dt 

dwj+i dwj 

dyk   dyk 

\  n   (sin2 ((>j svaf YJ 

cT       \ coscpj cos4>j 

Lastly the time derivatives of the Wfa may be computed using the hyperbolic system itself: 

We note that the implementation of this method within a standard time-stepping procedure is straight- 
forward. We will discuss below how this has been done for difference methods, while in [87] discontinuous 
Galerkin methods are used. As presented so far, the formulation may seem somewhat ad hoc. However, it 
will be shown in the next section that it is equivalent to a rational interpolant of the symbol of nonlocal 
operators arising in exact boundary condition representations, with the interpolation nodes determined by 
both (j)j and (pj. 
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5.3    Analysis 
To derive error estimates we must estimate the complex reflection coefficient. For simplicity we will carry out 
the analysis for the acoustic system with d = 3, but similar estimates for Maxwell's equations and for other 
dimensions could be derived in the same way. (See [73] for a direct treatment of the scalar wave equation.) 

We consider the system in diagonalized form and slightly change notation: 

dW+ 311)+ _ _ /OD;N 
-TTT + C-r^ + cVtan ' ^tan = 0, (85) 

at ox 

dw-       dw 
■     1     + cVtan • i;tan = 0, (86) 

ot ox 

^ + ^n{w++w.)=0, (87) 

where 
w+=p + vx,   w-=p-vx. (88) 

Specialized to this sytem equations (82)-(84) become: 

1 + cos0J dw+j+i -l + cosfydw+j .,,+,,,     ,"1 
 r—■—      — S Vtan     ^•'tanj + 1 T t'tanj; 

c ot c ot 

cT \ cos <j)j cos cj)j ) 

1 + cosd).j dw- i —l + cos4>jdw-j+i      „        , , \ 
 -^ '^       =       — ^7 Vtan • («tan,7 + l + ■"tanj) 

dt ^*n'J- 
1   /sin2 
i     /  bill   ipj am    Vj \ fr.^ 

CT  \ COS(j>j COSCpj ') 

^i + 5Vtan(^+,J+^-.J)=0. (91) 

Assume that the solution is produced by sources and Cauchy data in the region x < -5 and that the 
artificial boundary is located at x = 0. The error then satisfies the homogeneous system with zero initial 
data driven only by reflections from the artificial boundary. These we estimate using the data at x = -5, 
which is crucial if positive results are to be obtained. (Roughly, the derivation of finite time estimates with 
separation between sources and the boundary excludes glancing modes.) 

Performing a Fourier-Laplace transformation as before, the solution for x > -J can be completely 
characterized by M)+(—5, /c, s): 

[   S!    )=^+M,M)e-^)(   If   ), 02) 
\  *tan   / \   l+j   / 

where we have introduced l 

7=(s2 + |fcl2)5. (93) 

Similarly, the error is a reflected wave completely characterized by e_(0, k, s): 

j    el    j -MM,«)«7* (     1     ) • (94) 

Now e_(0, fc, s) can be directly calculated using the boundary recursion. 
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Lemma 5.1   The reflection from the artificial boundary is given by: 

e-{0,k,s) = R{k,s)w+{-5,k,s), (95) 

where 

i ^"2 h \      /«,_»««2.-0.^11 
Rik,s)   =    MM ———-      : sin20     •    ———=   ;   : ggti 

Til) e-r*. (96) 
7 + s/ 

Using this explicit representation for the reflection coefficient we can directly establish the well-posedness 
of the system with the approximate boundary and write down error estimates. 

Theorem 5.2 The initial-boundary value problem for the acoustic system in the half-space x < 0 with the 
complete radiation boundary conditions (80)-(81) is strongly well-posed. Moreover there exists a universal 
constant C such that for x < 0.' 

l|e(x,->-)lll,2(E''-ix(0,T)) < PC||W(-(5, •,-)llL2(Rd-1x(0,T)), (97) 

where . , s 
/-nr |COS(?-cos(??j| icosy-cusyji  i     / i - uuSy | e__^._A_ ^ 

i- -I- (Vns rh A- cos rti-") (V.ns (b + cos (4„ ~)  J     V 1 + COS (b I 
-A- | COS 0 - COS (pj | | COS (/) - COS (pj | \      / 1 - COS 0 ^ 

o<^<f 1 ■M- (cos 0 + cos cpj) (cos 0 + cos fa) j    V1 + cos<; 

5.4    Parameter selection 
According to (98), the error estimate is optimized by choosing angles, (pj, to minimize p. Here we adapt 
Newman's well-known construction of rational approximants to |x| [83] to derive an explicit set of angles which 
achieve the tolerance with P = 0(ln 7 • In x- (See I84! for a furthei' discussion of optimal approximations to 
similar functions.) 

Choosing a tolerance, e > 0. we note that both the exponential factor and the parameter-dependent 
factor in (98) are bounded above by one. Thus we can satisfy the tolerance by making either less than e. 
We begin by considering the regime where cos 4> is small. In particular we have: 

g-^T-^sr* < £i (99) 

whenever 
cos^< —-^ = CQ. (100) 

cTln^ 

Now restrict attention to the interval CQ < cos $ < 1 and consider the problem of minimizing: 

pc .   max   fn1 ^\ ■ i1-^) , (101) 
co<c<l  I    "^Q     c+aj \l+c/ 

where now the parameters a, encompass both cos (j>j and cos 4>j. Following [83] set: 

aj^g^1,   g={c0)^. (102) 

Suppose 
g- J+l   s- r ^ nl KcKgi. (103) 
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Then after some manipulation 

l 2P+3 

pc<  J| exp(-29
fc)=exp(-2fl(l-5

2P+2)/(l-5)). 
fc=i 

We thus must choose P sufficiently large that: 

1 - o2P+2 1 
2g1—^ >In-. (104) 

1-5 « 

Assuming for simplicity that e <g; 1, ^ 2> 1 it is sufficient to satisfy; 

fl > 1 - A (105) 
Ini 

which requires 

P = O 6n — • In -V (106) 

Using Theorem 5.2 we have thus proven: 

Theorem 5.3 Suppose e < 1 and ^f > In^.  Then there exists a universal constant C such that if: 

P>Cln^--ln-, (107) 

and the complete radiation boundary conditions (80)-(81) are imposed with parameters: 

cos 4>j = cf^,    cos ^ = cf^, (108) 

for j = 0,..., P and CQ defined by (100) the error satisfies: 

IKz, •, •)llL2(iR«'-ix(oIr)) < «lk(-5, •, OIIL^R^-IXCCT))- (iOS) 

Clearly this analysis, by considering only one of the factors in (98) at a time, does not produce optimal 
error estimates or optimal parameters. For practical purposes we will compute parameters numerically by 
minimizing p for fixed values of -jb and P. We employ the standard Remez algorithm (e.g. [84]) with initial 
approximations provided by the geometric distribution introduced above. We note that the computation 
is extremely rapid, so that in practice one could directly compute a minimal P-value and the associated 
parameters for input values of e and J|I . 

In Figure 9a we plot the optimal cosines for ^ = 10~3 and P = 4,8 and in Figure 9bwe plot the 
corresponding reflection coefficients as a function of 6. 

5.5    Hyperbolicity of the boundary system 

Although we have proven that the initial-boundary value problem for the acoustic system combined with the 
approximate radiation boundary conditions is strongly well-posed, we would like to additionally consider the 
well-posedness of the boundary system directly. This leads to confidence that it can be directly discretized 
as a hyperbolic system and also motivates the form of the corner closures we will seek. To that end we 
consider (89)-(91) for j = 0,..., P supplemented by (85), with SSi treated as an inhomogeneous term and 
W-^p+i = 0. In three space dimensions we then have a system of 4P-I-5 first order equations on the boundary 
(3P + 4 in two space dimensions). We were able to establish hyperbolicity, stated in the following Lemma: 

Lemma 5.4  The boundary system is hyperbolic with characteristic speeds less than or equal to c. 

In addition we were able to create corner closure equations.. 
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Figure 9: a) Optimal cosines for ^ = 10  3. b) Reflection coefficients for -^ — 10" 

5.5.1     Physical boundaries 

At physical boundaries the acoustic system requires a single boundary condition. We suppose it takes the 
general form; 

bpp + bv-v = g, (110) 

with g = 0 for x > —5. For example, we may condider the solid wall boundary condition v ■ n — Q where n 
is normal to the boundary. As the linear combination of variables on the left-hand side of (110) applied to 
the auxiliary variables Pj, v* satisfies the basic recurison relations (75) we conclude: 

bPPj + hv-Vj =Q,   j = 0,..., P + 1. (Ill) 

We then impose these as our boundary conditions. Note that we have not yet tried to analyze the well- 
posedness of the boundary system terminated with (111), but we have encountered no instabilities in nu- 
merical experiments. 

5.5.2     Intersection of artificial boundaries 

In this case we have no direct way to translate the boundary conditions from the adjacent boundary to 
termination conditions for the auxiliary variables. Instead, we attempt to generalize the closures based on 
compatibility conditions first proposed for homogeneous rational approximants in [62,80,86]. Our construc- 
tion is closely related to the one presented in [69], and in particular it can be easily interpreted via the 
analogy with PML mentioned earlier as a corner layer. 

To minimize the algebraic complexity, we will focus first on the case of two space dimensions. We also 
make the unnecessary assumptions that identical parameters and boundary condition orders are being used 
on each piece of the boundary and that the boundaries meet at a right angle. The more general case of 
boundaries meeting at angles greater than or equal to S will be described in [87]. We identify the coordinates 
x and y as the normals to the two boundaries. 
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We now define a doubly indexed collection of auxiliary variables which satisfy both the recursions (75) 
associated with the two normals. 

cos<f>kduj,k+i      du^k+i   .    1  sin2<£fc cos4>kdu^k   .  dujk   , 1 .   9 sm ^As 
cT cos 0fc 

1 sin2 tl C08$jdUj+itk     diii+ik  ,    1 sin2^,- coscpj du-j^k  ,  duii,       ...... 
c at ay cT cosfy c       at ay       cT cosfa 

Note that the variables uo.fc can be identified with the auxilary variables for the piece of the artificial 
boundary with normal coordinate x and Ujfi identified with variables for the piec with normal coordinate 
y. Combining (112) with (113) for each component together with the acoustic system itself allows us to 
eliminate all spatial derivatives The only subtlety to the process comes from the fact that each direction is 
characteristic. The final forms we obtain are as follows. For j,k = 0,..., P: 

 ' ' i^—      =      COS fflj. : COS 01c ^  
dt dt dt dt Vk      dt Vk        dt 

+    COS(j)k       '''    -cos4>k ^  

sin2 0fc sin2 4>k 
Vx,j+l,k - ~ j-Vxj+i^k+i 

Tcos4>k  "'^ '"     Tcos0fc 

sin2 (pk sin2 ^ 

TcoS(pfc Tcoscpk 

dt C0S*j        dt 
+     COS (pj ^ COS vj 

dvyj.k i dvyj+ik +    cos^^^-cos^^i^ (114) 

sin2 <i>j sin  ^ 

T cos (j)j T cos 4>j 

sin <j)j sin 0j 

1 cos (pj T cos cpj 

For j = 0,...P+l,k = 0,....,P: 

dvxjh+i   ,  dvx j k ,  dpjk j 9pj k+i 
—dr- + -dr = cos<t)k^r-cos<t,k-dr 

sin2 (pk sm2(pk 

1 cos(pk Tcospk 

And for j = 0,... P, fc = 0,..., P + 1: 

dvy j+i k   ,  dVyjk .  dpjk 7 dPj+i,k 

+ *^Pjtk.*i*LPmtk, (116) 
Tcos(pj  ■"       Tcos(pj  J 

Clearly we have written down 3(P + I)2 + 2(P +1) ordinary differential equations for 3(P + 2)2 variables. To 
close the system we require 4P + 7 additional equations. We obtain 2P + 4 equations by specifying "outgoing 
characteristic" data from each edge. Precisely, let n^, ny = ± 1 be the components of the normal vectors to 
the boundaries. For fc = 0,..., P + 1: 

dpo,k    . dVyfiJ, I      J__ 1 ,*,~1 
—^ \-7i«—s =x —normal  edge  value, (117) 

at ay 
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and for j » 0,... ,P + 1: 

—r2—V "■x—^1_ =y ~ normal  edge  value. (118) 

The remaining 2P + 3 conditions follow from the termination conditions, which we average for j = fc = P +1. 
For fc = 0,..., P: 

-nv
WUy^+^=0, (119) 

for j = 0,..., P: 

and 

dt 

dt 
nx

UW+1 =0, (120) 

2dpp+1,P+1 _ nJvx,P+1,P+1 _     dvy,P+l,P+1 =0 (121) 

dt x y 

Solving this sytem provides us with the time derivatives of all auxiliary variables from each edge at the 
corner point. 

In three space dimensions an analagous set of 4(P + 2)3 equations can be written down at a corner point 
where three boundary faces meet. On edges we derive equations similar to the two-dimensional corner case 
which also include spatial derivatives along the edge. We have not yet implemented the corner closures in 
three space dimensions, but plan to do so in the future. We also emphasize that while the construction 
described above is clearly consistent with the construction of the boundary conditions and that numerical 
experiments show that it is stable and accurate, we have not analyzed it. 

5.6    Numerical experiments 
To demonstrate the effectiveness of the proposed conditions we performed two numerical experiment with 
the acoustic system in 2 + 1 dimensions. In the first experiment we employed a 8th-order grid-stabilized 
difference methods in space combined with the standard 4th order Runge-Kutta method in time. (See [74] 
for details.) The boundary system for the auxiliary variables is approximated with exactly the same methods 
and grid as the interior system. The acoustic system is solved for a solution domain embedded in M2 x [0,100] 
with the smooth source function: 

s(x,y,t) = 100-(100y2-l)8sin97rxsin97rt)   M < 0.1,   |x| < 1. (122) 

The computational domain is (-1.1,1.1) x (-.2, .2). Now we use the complete radiation conditions on all 
four sides, applying the corner closure described above. Parameters are based on the choice ^ = r] = 10_3, 
T = 100. We record the pressure at two spatial locations: (.2571, .071429),(1.0971, .071429). We take 
Ax = Ay = 2.8571 x 10-3, Ai = 5 x 10-4. As we have no exact solution, errors are measured against 
a solution computed with a large value of P, P = 20. We display the results in Figure 10. Again the 
convergence is spectral with error levels commensurate with the reflection coefficients. In particular, we 
observe no adverse effects from the corner closures. 

In the second experiment we performed exterior scattering from three cylindrical scatterers using a DGTD 
discretization in space and low storage Runge-Kutta in time. We computed a reference solution for a large 
domain, and then compared the solution using the complete radiation boundary conditions to truncate this 
into a much smaller computational domain. Our experiments again demonstrate spectral convergence with 
increasing numbers of auxiliary variables/equations commensurate with the reflection coefficient analysis. 
See Figure 11 for the truncated computational domain and convergence study. 
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Figure 10: Pressure errors for the free space distributed source problem. 

5.7    Summary: A New Family of Optimized Radiation Boundary Conditions 

The new, optimized, Complete Radiation Boundary Conditions (CRBC) dramatically improves the long 
time behavior of existing families of high-order local radiation boundary conditions. We have optimized the 
integro-differential operator representation of the boundary condition to provide quasi-optimal transmission 
of outgoing waves including those with evanescent component. 

6    Polyomino Tiling Algorithm 

This section of the project report describes a very abstract topic—algorithms for generating polyomino 
tilings—but its motivation comes from the very concrete problem of antenna design. 

In their work on the creation of wideband phased arrays of antennas, Mailloux, Santarelli, and Roberts [88] 
have considered working with polyomino subarrays. In the past, phased arrays would be made of identical 
rectangular subarrays on a grid, as in Figure 12. The periodicity of such designs results in large quantization 
sidelobes at certain frequencies. A sidelobe is a direction other than the main beam direction in which 
the array radiates, and sidelobes with high power relative to the main beam "represent severe pattern 
degradation." 

The authors' cost-efficient solution was to make each subarray in the shape of a single polyomino profile. 
Figure 13 shows the L-octomino that they chose to use. The presence of gaps between the subarrays would 
reduce the aperture efficiency, so the subarrays must tile the aperture exactly, although they may extend 
past the edges of the aperture, as in Figure 14. 

The problem that arose was the subdivision of the aperture into subarrays. They wished to create a 
large number of dissimilar tilings for comparison purposes, but tiling by hand proved to be tedious and 
time consuming. They turned to various existing polyomino software, but they found that existing programs 
either couldn't tile a rectangle as large as the 64 x 64 aperture that they used, or that they were prohibitively 
slow. In the end, they resorted to dividing the aperture into four 32 x 32 sections which could be more easily 
tiled. 

The obvious problem with analyzing only tilings which can be divided into even quarters is that they are 
leaving the vast majority of tilings out of their search for ones with good properties. Furthermore, it is not 
unreasonable to suspect that the best tilings at avoiding the ill effects of periodicity are those which cannot 
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Figure 11: a): truncated domain used to compute with complete radiation boundary conditions, b): com- 
putational error for scattering in truncated domain dependence on number of auxiliary boundary equations 
used. 

Figure 12: A diagram shower in individual antennas, a subarray, and the aperture 

be cleanly divided into rectangular subsections. 
We have set out to design algorithms that are better suited for the authors' purposes than the polyomino 

software currently in existence. In particular, we have worked with the following ideal parameters in mind: 

1. The algorithm should work with an arbitrary set of polyominos, so that other subarray shapes may be 
explored in the future. 

2. The algorithm should be reliably quick, and the time should scale well enough that larger apertures 
may be considered in the future (i.e. the time required to tile an n x n aperture should be 0(np) for 
some small p). 

3. The tilings generated by the program shouldn't favor any structure or pattern and should be dissimilar 
from each other (i.e. they should sample the space of all possible tilings somewhat uniformly). 

In the background section, we will explain why traditional polyomino programs do not scale well by 
reviewing the relationship between polyomino tiling and the Exact Cover problem, we will review Donald 
Knuth's Algorithm X, the fundarrental algorithm for solving the Exact Cover problem, and its behavior 
in different situations. We will then present three types of algorithms designed to satisfy the three criteria 
above. The first type builds tilings using a randomized version of Algorithm X; the second, instead of building 
a new tiling, modifies an existing one; the third is a hybrid of the first two. Finally, we will discuss the issue 
of creating a metric to score the disorder in a tiling, with the hopes that such a disorder metric will have 
positive correlation with high-quality phased array designs. 
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Figure 13: The L-ocotomino used by Mailloux et al., and its symmetries 

Figure 14: An example of an a tiling with subarrays extending past the edges of the aperture 

6.1     Background 

6.1.1     The Exact Cover Problem 

The Exact Cover Problem in its most general form is to find a partition of a set within a limited collection 
of subsets: 

Given a set 5" and a collection £ of subsets of S, choose a subcollection £* C C such that 
X n y = 0 for distinct X,Y e €' and such that S =     U   X, or determine that no such 

subcollection exists. 
xec- 

In its discrete form, it is often helpful to envision the Exact Cover problem as a binary array. For each 
element Xj 6 5 there is a row, and for each subset JQ 6 £ there is a column. The {i,j) entry is 1 if Xj e Xi 
or 0 if Xj g Xi. The problem is to select a set of rows such that, within that set, a 1 appears in every column 
exactly once (See Figure 15). 

The discrete Exact Cover problem was one of the first problems that was identified as NP-complete, 
which means that all existing algorithms for solving it are super-polynomial time algorithms in terms of the 
size of the inputs, and that it is very unlikely that a polynomial time algorithm exists. 

6.1.2     Describing Polyomino Tiling as an Exact Cover problem 

Given a domain to be tiled with polyominos, (which need not be rectangular), S will be the set of all squares 
in the domain. A subset is added for each polyomino in every position where it can be legally added (see 
Figure 16). Thus, for a rectangular domain of size m x n that we wish to cover with polyominos from a 
set of k polyominos, then the size of the binary array used to visualize the Exact Cover problem will be 
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Xl X2 X3 X4 X5 x6 X7 

Xx 0 1 1 0 0 0 1 

x2 1 0 0 1 0 0 0 

X3 0 0 0 0 1 1 0 

Xi 1 1 1 1 0 0 0 

x5 0 0 0 0 0 1 1 

Xe 0 0 1 1 0 0 1 

x7 1 0 0 1 1 1 0 

x8 1 0 0 1 0 0 0 

x9 0 1 1 1 0 0 0 

Xio 1 0 0 1 0 0 1 

Figure 15: An Exact Cover binary array, with {Xi,X3,X$} as a solution 

(~ kmn) x mn. 

n m ■ ■ 

1 1 0 1 0 

a 0 1 0 1 

n 1 1 0 0 

y 0 0 1 1 

Figure 16: An example of converting a polyomino tiling problem (in this case, covering a 2 x 2 square with 
dominos) into an Exact Cover problem. Each square is assigned to a column; each placement of the vertical 
domino get a row, and each placement of the horizontal domino gets a row. 

6.2    Algorithm X and Dancing Links 

In 2000, Donald Knuth wrote down in formal terms what is essentially the trial-and-error method for solving 
the Exact Cover problem, calling it Algorithm X. He phrased it in terms of the binary array representation: 

Because the row r is chosen nondeterministically, we can visualize Algorithm X as making a copy of 
itself for every r such that ^4[r, c] = 1. Thus the algorithm as stated will print all solutions to the given 
Exact Cover problem. Of course, there are no nondeterministic computers at the moment, so Algorithm X 
is of no use on its own. Thankfully, Knuth popularized a useful way of storing the binary matrix data so 
that two functions, CoverColumn and UncoverColiunn, can be done very efficiently. CoverColumn takes a 
column c, and removes it from the binary array A, then removes every row r such that A[r, c] = 1 from the 
array; UncoverColunm reverses the changes made by CoverColumn. These functions allows us to implement 
Algorithm X deterministically. The resulting recursive algorithm, called DLX (the DL stand for "dancing 
links", the term Knuth uses for his binary matrix data structure) is as follows: 

1 Rotations and mirror-images are taken to be separate polyominos in this analysis. So the L-octomino used by Mailloux et 
al. in fact counts for 8 polyominos: each rotation and its mirror image. 
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Algorithm 1 Algorithm X (binary array A, subset of rows S) 

if A is empty then 
the problem is solved; 
print   the solution set S; 

else 
Choose a column, c (deterministically). 
Choose a row, r, such that ^4[r, c] = 1 (nondeterministically). 
Include r in the partial solution S. 
for every j such that j4[r, j] = 1, do 

delete column j from array A; 
for every i such that A[t,j] = 1, do 

delete row i from array A. 
Run Algorithm X (A, S). 

Algorithm 2 DLX (binary array A, subset of rows 5) 

if A is empty then 
the problem is solved; 
print   the solution set 5; 

else 
Choose a column, c. 
CoverColumn (c). 
for every r such that A[r,c]=l do 

add r to the partial solution set S. 
for every j such that A[r,j]=l do 

CoverColumn (j). 
DLX (A, S). 
for every j such that A[r,j]=l do 

UncoverColumn (j). 
remove r from the partial solution set 5 

UncoverColumn (c). 
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The terminology used above may be a bit obscure, and exactly how this can solve a polyomino tiling 
may not be exactly clear. We will restate the algorithm above in terms of polyomino tiling, which will make 
it a bit clearer. First, we will use the term empty space to refer the squares not yet covered by polyominos. 
At the start of the algorithm, the empty space E will be equal to the whole space that we would like to tile. 
We will use placement to refer to the combination of a polyomino and a position in the space to be tiled: 
a placement can either be legal (all of its squares are still in E, i.e. they haven't been covered) or illegal 
(some of its squares have already been covered). We will use L to refer to all remaining legal placements. A 
partial tiling will refer to a combination of legal placements within the space to be tiled: when the algorithm 
begins, the partial tiling P will be empty. 

Algorithm 3 PolyominoDLX (empty space E, partial tiling P, legal placements L) 

if E is empty (there are no uncovered squares) then 
the partial tiling P is now complete (it covers every original square); 
print   P. 

else 
Choose an uncovered square s in E. 
for every legal placement p in L that covers s, do 

add p to the partial tiling P; 
remove the squares covered by p from the empty space E. 
for every placement g in L that was legal until p was added do 

q is now illegal, remove q from L. 
PolyominoDLX (E, P, L). 
Remove p from the partial tiling P; 
add the squares covered by p back into E. 
for every placement q that is now legal because p has been removed do 

add q back into L. 

This is very much like what a person would do when trying to cover a space with rectangles by hand. 
The person would keep adding polyomino tiles until he either covers the entire space or makes a hole that no 
tile can fill. In the latter case, rather than starting over at the beginning, the person is likely to remove the 
last tile that he placed and try a different one in the same. If every tile that he tries in that spot results in a 
hole, then there must have been a problem with the tile that he placed before that one, and so on. The only 
difference is that PolyominoDLX, in the form stated above, will continue searching after it finds a valid tiling, 
in will continue until every valid tiling has been found. For a graphical representation of what PoyominoDLX 
is doing, see Figure 17, which demonstrates how the algorithm performs a depth-first search of the tree of 
all partial tilings, where one partial tiling is a descendant of another if it includes one additional tile. 

The above algorithm can be easily modified to return only one tiling. We change PolyominoDLX so that 
it returns a boolean value. In the terminal case, where we are sure that we have found a tiling, it will return 
true. In other cases, the algorithm checks to see if the recursive call to PolyominoDLX has returned true, 
which means that a comlete tiling has been found that includes placement p. If this is the case, then the 
algorithm will immediately return true to the preceding instance of PolyominoDLX, which will immediately 
return true, etc. until the original call returns true. If none of the instances of PolyominoDLX return true, 
then no placement p that covers square s can result in a complete tiling. This must mean that there was an 
error in a preceding instance of PolyominoDLX (i.e. a bad choice of p at a previous step), so the algorithm 
returns false. If the original instance of PolyominoDLX returns false, then there is no way to tile the space 
with the polyominos that we have chosen to work with. 
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Figure 17: An example of a search tree created by PolyominoDLX. Each numbered domain represents a call 
to PolyominoDLX: the number indicates the order in which the call was created, and the tiles in the domain 
are the placements that were in P at the time PolyominoDLX was called. 

6.2.1 Column Selection 

Notice that in the description of DLX, no description is given of how the uncovered column c is chosen. In 
fact any method of choosing will work, but the speed of the algorithm depends on the choice made. After a 
choice of column c is made, we spawn a new instance of PolyominoDLX for every row such that A[r, c] = 1, 
and each instance represents a new branch in the search tree as imagined in Figure 17. If there are many 
branches to search at every step, a lot of time can be spent search branches that will not lead to a complete 
tiling. Therefore, a good idea is to go for a minimal number of branches at each step, i.e. to choose a column 
which has the fewest remaining entries. With this heuristic chosen, the behavior of PolyominoDLX becomes 
even more like the behavior of a human, because the squares with the fewest remaining legal placements 
will be the ones chosen, and those are the ones near the corners of the untiled space E. In other words, the 
algorithm will begin in a corner, and it will place new tiles next to tiles it has already placed. 

6.2.2 Row Order 

In addition, no description is given of the order in which the algorithm attempts to add rows r to the partial 
tiling P. One consequence of the data structure used in DLX is that instances of r such that A[r, c] = 1 can 
only be found in increasing order of r. A consequence of this for PolyominoDLX is that, at the beginning of 
the algorithm, each placement is given a unique number from 1 to the number of placements, and at every 
step, placements are attempted in increasing order. When we are trying to find all tilings, this is not a 
problem, but when we are trying to find only one, the order in which the placements are numbered affects 
the tiling that is found. 

Consider the two small examples given in Figure 18. It's clear that each problem has the same two 
possible tiling. In problem 1, we will only find the first tiling, no matter the order in which we choose the 
squares. In problem 2, the order in which we choose the squares affects the tiling that we find: choosing 
square 1, we will find the first tiling; choosing square 2, we will find the second tiling. Thus we can say that 
the order in which we choose the squares has a limited effect on the tiling that we find, while the initial 
ordering of the placements has a much greater effect. 
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Algorithm 4 boolean = PolyominoDLX (empty space E, partial tiling P, legal placements L) 

if E is empty (there are no uncovered squares) then 
the partial tiling P is now complete (it covers every original square); 
print   P; 
return  true, 

else 
Choose an uncovered square s in E. 
for every legal placement p in L that covers s, do 

add p to the partial tiling P; 
remove the squares covered by p from the empty space E. 
for every placement q in L that was legal until p was added do 

q is now illegal, remove q from L. 
tf = PolyominoDLX (E, P, L). 
if tf is true then 

return   true. 
Remove p from the partial tiling P; 
add the squares covered by p back into E. 
for every placement q that is now legal because p has been removed do 

add q back into L. 
return   false. 

r\ a £ a 
c i 0 1 0 

3 0 ' 0 1 

H I I 0 a 

H 0 0 1 i 

E3 a . a 
c l 0 1 0 

H l 1 0 0 

H 0 0 t 1 

J D 1 0 1 

Figure 18: Problem 1 on the left and Problem 2 on the right have equivalent solutions, but different solutions 
will be found by PolyominoDLX. 

6.3    Algorithms 

6.3.1    Naive Example 

Suppose we want to satisfy the third criterion at the expense of the second. We can use PolyominoDLX in a 
straight forward fashion to guarantee that our algorithm produces all possible tilings with equal likelihood. 

Algorithm 5 P = NaiveAlg (untiled space E) 

Generate the set L of all legal placements for the space E, and initialize the partial solution P : 
Generate and store all possible tilings using PolyominoDLX(£, L, P). 
Select a tiling P randomly from these tilings, 
return   P. 

The problem with this idea is that the number of possible tilings, for every non-trivial set of polyominos, 
grows exponentially with the size of the domain. Consider the L-octomino used by Mailloux et al.: there 
are four ways that it can tile a 4 x 4 square. Therefore, if we wish to tile a 4n x 4n square, we could simply 
divide it into n2 smaller squares and tile each randomly, which means that there are at least 4n = 16n ways 
to tile the whole space.  Given that the aperture they wish to tile is 64 x 64, there are at least 1.8 x 1019 
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tilings which can be considered trivial tilings, 
tilings for is 12 x 12. 

The largest square that we have been able to generate all 

6.4    Randomized PolyominoDLX 
Given the importance of row order in DLX, the next algorithm that we propose is a randomized version of 
PolyominoDLX. 

Algorithm 6 P = RandPolyDLX(untiled space E)  

1: Generate the set L of all legal placements for the space E, and initialize the partial solution P = 0. 
2: Shuffle the order of L. 
3: Use PolyminoDLX(P, L, P) to find only one tiling. 
4: return   P. 

How does this algorithm compare to the naive one in terms of how uniformly it generates tilings? First, 
it is clear that every complete tiling can be generate by this algorithm: all that is required is for the 
placements in the tiling to be shuffled to the beginning of the list, so that they will always be selected before 
other placements, regardless of the order in which we choose squares. Are all tilings generated with equal 
likelihood? The answer is no. Consider the two partial tilings in Figure 19: RandPolyDLX is as likely to 
begin with the two placements on the left as it is to begin with the two placements on the right. On the left, 
though, RandPolyDLX could go on to produce more than 64 tilings, while the pattern on the right results in 
only one complete tiling. Clearly, "he algorithm is much more likely to produce the tiling on the right than 
one of the tilings on the left. 

Figure 19: The two partial tilings on top are equally likely to occur during a call to RandPolyDLX, but the 
one on the left has only one descendant, while the one on the right has at least 64. 

This algorithm is clearly more space efficient and time efficient than the naive example above, but how 
fast is it? The time that it takes RandPolyDLX to find a complete tiling is directly proportional to the number 
of recursive instances of PolyominoDLX that are called before a complete tiling is found. Recall the search 
tree as presented in Figure 17: at each branching point of the tree, the randomized algorithm takes each 
descendant path with equal probability. If it attempts to go down a branch where there are no solutions, it 
must visit all of the nodes in that branch before it can try another branch. 

Let us suppose that we are at node x, which has descendants Ift, J/2, •"" ,ym, each of which has a solution 
somewhere in its branch, and descendants zi,Z2,...,zn, each of which has no descendants in its branch. 
Pil/i) will be the average number of nodes visited after yi before finding a solution, and t{zj) will be the total 
number of nodes below yj in the tree. So if j/i is a node that represents a complete tiling, then p{yi) = 0; if 
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2/i has one descendant, which happens to represent a final solution, then p{yi) — 1, etc. Let p be the average 
of the p{yi) values and t be the average of the t{zj) values. The value of p{x) will be 

n 

p(x) = ^(probability that j of the z nodes are visited before a y node) * {j{i + I) + {p + 1)) 
3=0 

= E m + n-{j + l))\ n! 
^ ^T    * W +1) + (P+ I))- (m + n)! (n-i)! 

Because of the recursive nature of this relationship, we can compute the average number of steps used by 
RandPolyDLX at the same time that we ask PolyominoDLX to find all tilings. We have computed this value 
for tilings of size 4 x 4, 8 x 8, and 12 x 12 using the L-octomino; computing it for 16 x 16 would be a batch 
job that would take days. The average number of instances that we computed for each were 2.4, ~ 9.7, and 
~ 29.3, respectively. 

If we assume that the growth in the average number of instances is 0(np) for a square of size n x n, we 
know that p must be at least 2, because at least one instance must be created for each tile in the complete 
tiling, and the number of tiles in a complete tiling grows quadratically. The growth from 2.4 to 9.7 suggests 
an exponent of p ~ 2.02, while the growth from 9.7 to 29.3 suggests an exponent oi p ^ 2.715. If we assume 
that the growth is OCe""), then the change from 2.4 to 9.7 suggests p ~ 1.38, while the change from 9.7 to 
29.3 suggests p « 0.97. We only have three data points to work with, but they seem to suggest that the 
average run-time of the algorithm is super-polynomial, but sub-exponential. To understand the behavior of 
the run-time at larger n, we have to turn to empirical data. 

Experiments show that although the median compute time is small in most instances, there are cases 
where the program takes unacceptably long time to terminate. No matter our estimation of the growth of 
the average run-time, the existence of pathological instances where the algorithm essentially runs forever 
means that the algorithm in its current form does not scale well enough for it to be used for larger n: the 
largest square for which the algorithm is reliable is 16 x 16. One modification, though, will extend reliability 
to another order of magnitude. 

6.4.1     Restarting 

Given the large gap between the median run-time and the pathological cases for n = 32, RandPolyDLX is 
likely to find a tiling faster if it restarts after its run-time passes a certain cut-off point. To achieve this 
we make a few small modifications to PolyominoDLX: we include in its arguments the start time t of the 
program, which we pass unchanged to every recursive call, and a maximum runtime A. Then, at the start of 
a call to PolyominoDLX, we find the current time T and check to see if T - i < A. If it isn't, then we return 
a restart flag to the preceding instance of the algorithm, which returns the restart flag to its predecessor, 
and so on. The new algorithm looks like this: 

Algorithm 7 P = RestartDLX (untiled space E, maxtime A) 

Generate the set L of all legal placements for the space E. 
while PolyominoDLX returns a restart flag do 

Set P = 0. 
Shuffle the order of L. 
Record the current time t. 
PolyminoDLX(£, L, P, t, A). 

return   P. 

Suppose there is a set probability q such that we want to minimize the time T such that with probability q, 
RestartDLX runs in less time than T, and suppose that the CDF /(f) for the average run-time of RandPolyDLX 
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is known. Then for a given A, the CDF g{t) for RestaxtDLX(A) is 

g{t) = 1 - (1 - /(A))LiJ + f{t - AL|j)(l - /(A))LiJ. 

We can ignore the second part by assuming that t is some multiple A; of A, in which case 

5(fcA) = 1 - (1 -/(A))fc. 

We want to find the smallest value of kA such that g{kA) > q. This is equivalent to finding the smallest 
value of kA such that (1 - /(A))* <l- q. 

Restarting RamdPolyDLX will not eliminate any tiling from being generated: as stated above, the right 
ordering of the placements will result in a given tiling being found without any backtracking. It may be true, 
though, that restarting changes the probability that a given tiling will be generated. For every tiling P, we 
could theoretically enumerate all of the of ways that RandPolyDLX could find P, and find the distribution of 
how long it would take to find P in each case. If a relatively high proportion of those times are longer than 
the cut-off A, then RestartDLX would be less likely to find P than RandPolyDLX. In my work to develop 
a metric for the disorder in a tiling, the outputs of RestartDLX seem to be equally disordered for different 
values of A, which suggests that the effect of restarting is fairly small. 

6.4.2    Rough edges 

It is intuitive to think that a lot of the time in the above algorithms is spent making the tilings conform to 
the edges of the area being tiled; indeed, Mailloux et al. state that the were never able to tile a large domain 
exactly by hand, and instead allowed the polyominos to hang over the edge, so long as the entirety of the 
aperture was covered. We can make a few slight changes to PolyominoDLX that will allow it to operate in the 
same fashion. First, we give every square a flag, marking it as either "necessary" or "unnecessary". Next, 
we change the stopping criterion of PolyominoDLX: whereas before it stopped when there were no uncovered 
squares, it now stops when there are no uncovered necessary squares. Finally, when selecting a square s in 
the main stage, only necessary squares are considered. The rough algorithm looks like this: 

Algorithm 8 F = RoughDLX(untiled space E)  

1: Mark every square in £ as necessary. 
2: Create a buffer B of unnecessary squares around E such that every polyomino placement that contains 

one square of E is contained in B U £. 
3: P = RandPolyDLX(P U E). 
4: return  P. 

Computational experiments show that the algorithm has fewer pathological cases at n = 64 than 
RandPolyDLX does, but the pathological cases still exist. It seems that allowing rough edges is not a fix 
that makes all n more tractable: for n — 128, the pathological cases are still too frequent to make the 
algorithm practical. 

6.5    Pair-Swapping 

There is something counterintuitive about using variants of DLX to create the sort of polyomino tilings that 
uses a versatile polyomino set, such as the set of all tetrominos, over a large area. DLX was created to answer 
the decision question, "can this space be tiled"? When tiling a 64 x 64 square—or any rectangle where both 
lengths are even—with tetrominos, the decision question is not a difficult one: the space can be filled with 
2x2 squares. The desire for an algorithm that takes advantage of an easily identified tiling resulted in the 
PairSwapping algorithm. 

43 



Algorithm 9 P = PairSwapping)untiled space E 

Initialize P to be the easily identified tiling of E. 
for as long as is desired do 

choose a placement p at random 
if p has a neighbor placement q such that the profile of p and g can be filled with two different placements, 
pand g then 

remove p and q from P and add p and g. 
return   P. 

a) b) 

c) • •        d) • • 

Figure 20: A graphical demonstration of the pair-swapping process. 

The advantage of this algorithm is that swapping two tiles is a constant-time procedure, and that P is 
a complete tiling throughout the algorithm. Instead of a search tree for finding a complete tiling, we now 
picture a web of complete tilings, with two tilings being adjacent to each other if one can be transformed 
into the other through one pair-swap. Using this metaphor, PairSwapping is just a random walk within this 
web. 

We know a priori that the run-time for this algorithm scales well: in fact, we know that it scales as 0(n2) 
for an n x n square. Whatever criteria we use to determine how many swaps k necessary (on average) for 
an n x n square, the same criteria will find that 4k swaps are necessary (on average) for a 2n x 2n square, 
since it has four times the area. 

An interesting question is whether every possible tiling can be reached from the initial tiling using pair 
swaps. This is clearly dependent on the set of polyominos being used, and in most cases is a difficult question 
to tackle. Suppose we limit ourselves to a complete set of polyominos, i.e. a set of all polyominos of a given 
size k. Though we omit the proof here, it can be shown that any tiling of a rectangle with dominos can be 
transformed into any other tiling. Even in the case of tetrominos, we have yet to come up with an answer 
to this question. 

Regardless of the answer to the above question, we can still know something about the likelihood of 
being reached for any tiling in the orbit of the initial tiling. It helps to think of a chemical reaction, 
with configurations of tiles being certain states that can change into each other with equal forward and 
backward probability. Those configurations with more reactions, i.e. more ways that other configurations 
can be transformed into each other, will be more prevalent even as the reactions are allowed to continue 
on infinitely. So in the case of tetrominos, for example, if we begin with a field of 2 x 2 blocks, and allow 
pair-swapping to go on forever, we will almost always see a high prevalence of interlocking L's than we would 
see in a tiling created by DLX, as demonstrated in Figure 21. 
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Figure 21: An example of a tiling produced by PairSwapping. 

The flaw of this method is that it does not meet the first criterion from the introduction. It works well 
for the set of all tetrominos because a single profile can be covered by many pairs of tiles. In the case of the 
L-octomino, however, the only profile that allows more than one pair of tiles is a 4 x 4 square, which means 
that any initial tiling can only be trivially changed. 

6.6    Hybrid Swap 
The algorithm HybridSwap generalizes the idea of pair-swapping to any set of polyominos, while keeping its 
good run-time properties. For the set of polyominos in question, we choose a stencil size k and a cut-off 
time A, such that RestartDLX can tile a k x k square with the polyominos in a reasonable time with high 
probability. The algorithm then looks like this: 

Algorithm 10 P = HybridSwap (untiled area E, cut-off time A, stencil size k)  

Initialize P to be the easily identified tiling of E. 
for as long as is desired do 

Choose a. k x k square inside E according to some method. 
Set the untiled space F = 0. 
for every tile p in P such that p lies entirely with the chosen square do 

remove p from P. 
add the squares covered by p to F. 

Q = RestartDLX(F,A). 
P = PUQ. 

return   P. 

Because k is independent of the size of the original space E, and because the run-time of RestartDLX 
is bounded above with high probability, each iteration of the main for-loop takes essentially constant time. 
Therefore, regardless of the criteria that determine where to place the stencil, the run-time of HybridSwap is 
0(n2). A good criteria is to place the stencil at k/2 intervals throughout the space, so that whenever there 
is an edge between altered and unaltered tiles, that edge is then taken out by a subsequent use of the stencil. 
The stencil can also be placed randomly throughout the space, until one is satisfied that every square has 
been retiled at least once. Initial results using the disorder metric described below indicate that these two 
methods produce tilings that qualitatively that same. 

The probability that a given tiling will be generated by HybridSwap is a murky subject. Given an n x n 
square and a set of polyominos, the question one would like to have answered is: for which stencil sizes k 
can HybridSwap transform the initial tiling into every possible tiling? Its clear that it can for k = n, because 
then HybridSwap is essentially RestartDLX. For the L-octomino, we have found patterns such that an 8 x 8 
stencil cannot change in any non-trivial way, which means they cannot be reached from the initial tiling, 
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but we have no results for larger k. The next question is whether the tilings produced by HybridSwap are 
qualitatively different from those produced by RestartDLX. In some cases, such as using a 32 x 32 stencil on 
a 64 x 64 space, the disorder metric was able to differentiate between the averaged output of HybridSwap 
and RestartDLX, but the difference appeared to be slight. 

Figure 22:   The tiling on the left was created with RestartDLX; the tiling on the right was created by 
HybridSwap. 

6.7    Disorder Metric 
The quantization lobes described by Mailloux at al. are the result of periodicity: when there is some naturally 
occurring period in the layout of the subarrays, aliasing between that period and the wavelength degrades the 
signal. The idea behind a disorder metric is that a maximally disordered tiling should exhibit no significant 
periodicity in any direction. The human eye is remarkably adept at picking out order, so we propose the 
following transformation of a polyomino tiling that allows one to better spot any periodic behavior: 

Algorithm 11 (array J) = DisorderImage(m x n space E, tiling P)  

Set / to be an array of zeros of size 2m — 1 x 2n — 1 
for i 6 {-(m - 1), • • • ,TO - 1} do 

for j € { —(n — l),cdois,n — 1} do 
for every tile p in P do 

if There is a tile identical to p, but shifted down by i aud right by j then 
I[m + i,n + j]+ = 1. 

See Figure 23 for a graphical depiction of the process being described. 
The array / will have large values where a large number of tiles can be shifted by the same amount to 

exactly reproduce a different section of the space. When the array / is viewed using either color or a third 
dimension to differentiate high and low values, it becomes easier to spot where periodicity occurs. Perfect 
periodicity would look like a line radiating from the center of the image, along which there are many values 
which are higher than their surroundings. 

One strong point of this method is that it is general enough to be applied to arbitrary size domains, and 
to arbitrary sets of polyominos. For a given set of polyominos, though, the tiles may tend to certain patterns 
that allow one to distill the image I into a single value. For the L-octomino, a domain composed entirely 
of squares, as in Figure 24 (a), produces an image as in Figure 24 (b), where all of the non zero values are 
found at indices [i,j\ such that m — i = n — j=0 mod 4. In general, every tiling will have higher values 
at these indices than in the surrounding area, but the difference is noticeably slighter in disordered tilings 
(see Figure 24 (c) and (d)). We can even boil the array / down to a single value by summing its values at 0 
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000000 
000000 
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000000 
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000000 
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000000 
000000 
000000 
000000 
000000 
000000 

Figure 23: This a 12 x 12 array. Wnen we lay one copy on top of the other, and then shift if to the left by 
4 squares and up by 3, we see that one red tiles exactly overlays another red tile and one yellow tile exactly 
overlays another yellow tile Because (12,12) is taken to be the center of the image / that will be create, we 
can say that 7(12 - 4,12 - 3) = 2. Notice that 7(12,12), which represents zero-offset, is equal to 18: this is 
because at zero-offset, every tile overlays itself. 

mod 4 indices: 
x=   ^     jC   ?lm + iin + i]' 

where :(m) = {-(m - 4),-(m - 8), • • • ,-4,0,4,-•■ , (m - 8), (m - 4)}. 
Given two arrays, the one with the lower x value should be the more disordered, and thus the less 

periodic of the two. This value was able to correctly rank the best and worst performing arrays (in terms of 
sidelobe power) generated by Mailloux et al. using their previous software (see Figure 25). Work is currently 
underway to confirm this correlation on other arrays. 

7    Participants 
The project participants were 

• PI: Tim Warburton. Rice University 

• Post-doc: Tanya Vdcvina 

• Student: Toby Isaac ^Graduated 2008, US citizen). Currently a graduate student at ICES, UT Austin 

• Consultant: Professor Thomas Hagstrcrn, Southern Methodist University 

• Collaborator: JanS- Hesthaven, Brown University 

• Collaborator: Andreas Klockner (Graduate Student, Brown University) 

• Collaborator: Nice Godel (Graduate Srudent, University of Hamburg) 

• Collaborator: Steffen Schomann (Graduate Student, University of Hamburg) 

• AFRL Contacts: Thomas Roberts, Robert Mailloux, and Scott Santarell, Hascom AFB 
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Figxire 24: A comparison of the :mag2£. generates by a domain divided into squares and a typical output of 
RestartDLX. 

8    Presentations 

Conference Talks: 

• Oberwolfach Conference on Non-traditiona: Finite Element Methods, Mathematisches Forschungsin- 
stitut Oberwolfach, Germany, 20D&, 

• Discontinuous Galerkin Methods for Partial Differential Equations, Banff Intsrnational Research Sta- 
tion, Canada, 2007. 

• The 8th International Conferencs on Mathematical and Numerical Aspects of Waves, Reading, UK, 
2007. 

• 6th International Congress en Industrial and Applied Mathematics, Zurich, Switzerland, 2007. 

• International Workshop on High-Crder Fiaite Elemen- Methods, Herrsching, Germany, 2007. 

• Oberwolfach Conference on Computaticnal Electromagnetism and Acoustics, Mathematisches Forschungsin- 
stitut Oberwolfach, Germany, 20 D7. 

• 7'th World Congress en Cc-mputaticna; Mechanics, Los Angeles, CA, USA, 2D06 

• SI AM Annual Meeting, Boston  MA, 2306 

• Advances in ComputatiDn&l Scattering BIRS, Banff, Canada, 2006. 

Departmental Seminars: 

• Center for Computatior and Tecntology Colloquium, LDuisiana State University, LA, 2008. 

• Mathematics and Computer Sc:ence Drvisicn, Argonne National Laboratory, Chicago, USA, 2007. 
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Figure 25: The arrays presented by Msi.loiix e" al.  and the .mages that they generate. Notice the higher 
values at    mod 4 indices for the first image. tColormaps are jniform across the images.) 

• Computer and Information Techr.o_ogy Institute, Rice University, Houston, TX, 2007. 

• Department of Mathematics, Rice "Jni%-€rsity, Houston, TX, 2006. 

• ICES, U. Texas at Austin, TX, USA 2006. 

• Scientific, Computing Seminar, University of Houston, Houston, TX, USA, 2006. 

9    Publications 

The following list includes published jouria! articles. 

1. Convergence analysis cf an aaaptije ir,~trior penalty discontinuous Galerkin method, R. H. W. Hoppe, 
G. Kanschat, and T. Warburton. 3IAIvI Journal on Numerical Analysis  2008. to appear. 

2. Radiation boundary conditions fo- tir^erdependent waves based on complete plane wave expansions, 
Thomas Hagstrom, Timotny Warbun^n, and Dan Givoli, Journal of Computational and Applied 
Mathematics, 2008, to appear. 
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3. Taming the CFL Number for Discontinuous Galerkin Methods on Structured Meshes, T. Warburton 
and T. Hagstrom, SIAM Journal on Numerical Analysis, Volume 46, Issue 6, pp. 3151-3180 2008. 

4. An Explicit Construction for Interpolation Nodes on the Simplex, T. Warburton, Journal of Engineering 
Mathematics, Volume 56, Number 3, pp. 247-262, November, 2006. 

The following lists conference abstracts and student thesis work derived directly and indirectly from this 
project. 

1. Discontinuous Galerkin Methods for High Frequency Electromagnetic Computations, N. Gdel, S. Schomarm, 
T. Warburton, M. Clemens Eucap 2009, 3rd European Conference on Antennas and Propagation - 23- 
27 March 2009 in Berlin, Germany. Abstract accepted for presentation. 

2. Numerische Simulation hochfrequenter elektromagnetischer Felder mit der Discontinuous Galerkin Fi- 
nite Elemente Methode [ Numerical Simulations of High-Frequency Electromagnetic Fields with the 
Discontinuous Galerkin Finite Element Method ], N. Gdel, M. Clemens, U.R.S.I. 2008 Kleinheubacher 
Tagung (KH 2008), Miltenberg, 22.-25.09.2008. Abstract accepted for presentation. 

3. Lokale Zeitintegrationsverfahren zur effizienten Berechnung hochfrequenter elektromagnetischer Felder 
mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- 
putation of High-Frequency Electromagnetic Fields with the Discontinuous Galerkin Finite Element 
Method ] , S. Schomann, N. Gdel, M. Clemens, U.R.S.I. 2008 Kleinheubacher Tagung (KH 2008), 
Miltenberg, 22.-25.09.2008. Abstract accepted for presentation. 

4. Lokale Zeitintegrationsverfahren zur effizienten Berechnung hochfrequenter elektromagnetischer Felder 
mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- 
putation of High-Frequency Electromagnetic Fields with the Discontinuous Galerkin Finite Element 
Method ] , S. Schomann Student research project report, Helmut-Schmidt-University Hamburg, Ger- 
many, 2008. 

5. Accelerating the Discontinuous Galerkin Time-Domain Method, Timothy Warburton, MFC Report 
Nonstandard Finite Element Methods, No. 36/2008. 

6. On Complete Radiation Boundary Conditions and Optimal Absorbing Layers, T. Hagstrom, and T. 
Warburton, , 8th International Conference on Mathematical and Numerical Aspects of Waves. 

7. Taming the CFL Condition for Discontinuous Galerkin in Two-Dimensions, T. Warburton, and Thomas 
Hagstrom, 8th International Conference on Mathematical and Numerical Aspects of Waves. 

8. A Survey of Discontinuous Galerkion Methods for Time-Domain Electromagnetics, T. Warburton, 
Oberwolfach Conference on Computational Electromagnetism and Acoustics, 2007. 

10    Transitions 

As noted in the text we have worked with Adour Kabakian, of Hypercomp Inc, to transfer the multirate time 
stepping algorithm. He has implemented it within one of their DGTD solvers and sees noticeable speeds ups 
for sample problems of interest. 

We also worked with Mailloux's group at Hanscomb AFB. Toby Isaac visited them and shared his 
implementation of the tiling algorithm discussed in this report. They reported that antennae tilings derived 
from this algorithm delivered improved side-lobe reduction. Based on feedback from this group we added 
the facility to use user defined tiles in creating these tilings. 
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